Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 10: 1065, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178832

RESUMEN

Empirical evidence of the cost of producing toxic compounds in harmful microalgae is completely lacking. Yet costs are often assumed to be high, implying substantial ecological benefits with adaptive significance exist. To study potential fitness costs of toxin production, 16 strains including three species of the former Alexandrium tamarense species complex were grown under both carbon limitation and unlimited conditions. Growth rates, levels of intracellular paralytic shellfish toxins (PSTs), and effects of lytic compounds were measured to provide trade-off curves of toxicity for both PST and lytic toxicity under high light (300 µmol photons m-2 s-1) and under low light (i.e., carbon limited; 20 µmol photons m-2 s-1). Fitness costs in terms of reduced growth rates with increasing PST content were only evident under unlimited conditions, but not under carbon limitation, in which case PST production was positively correlated with growth. The cost of production of lytic compounds was detected both under carbon limitation and unlimited conditions, but only in strains producing PST. The results may direct future research in understanding the evolutionary role and ecological function of algal toxins. The intrinsic growth rate costs should be accounted for in relation to quantifying benefits such as grazer avoidance or toxin-mediated prey capture in natural food web settings.

2.
Harmful Algae ; 64: 51-62, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28427572

RESUMEN

Recently, a hitherto unknown feeding strategy, the toxic mucus trap, was discovered in the dinoflagellate Alexandrium pseudogonyaulax. In this study, over 40 strains of 8 different Alexandrium species (A. ostenfeldii, A. tamarense, A. catenella, A. taylorii, A. margalefii, A. hiranoi, A. insuetum and A. pseudogonyaulax) were screened for their ability to ingest prey and/or to form mucus traps. The mucus trap feeding strategy, where a mucus trap is towed by the longitudinal flagellum remains unique to A. pseudogonyaulax. In additional experiments, details of the trap were examined and quantified, such as speed and frequency of trap formation as well as what happens to the trap after the A. pseudogonyaulax cell detaches from it. The percentage of A. pseudogonyaulax cells producing a mucus trap and the number of prey cells caught increased with increasing prey concentration, whereas the physical size of the traps was independent of prey concentration. In one strain given an excess of prey, within 1h over 90% of individual A. pseudogonyaulax cells had formed a trap, each containing an average of 45 prey cells. Individual A. pseudogonyaulax cells steadily produced traps and up to 5 traps were produced by a single A. pseudogonyaulax cell after only 24h. The attachment of an A. pseudogonyaulax cell to the trap only ceased during, and just following, cell division. Prey cells were, to some extent, capable of escaping from the mucus trap, but the trap remained sticky and continued catching prey for up to 48h after the trap had been abandoned by the A. pseudogonyaulax cell. These results reveal that the effects of the mucus trap extend far beyond the removal of prey through ingestion, and the potential impact of this strategy on surrounding cells is high.


Asunto(s)
Dinoflagelados/fisiología , Cadena Alimentaria , Fenómenos Bioquímicos , Moco/fisiología
3.
Aquat Toxicol ; 157: 159-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25456230

RESUMEN

Bioassay-guided discovery of ichthyotoxic algal compounds using in vivo fish assays is labor intensive, costly, and highly regulated. Since the mode of action of most known algal-mediated fish-killing toxins is damage to the cell membranes in the gills, various types of cell-based bioassays are often used for bioassay guided purification of new ichthyotoxins. Here we tested the hypothesis that allelopathy is related to ichthyotoxicity and thus that a microalgal bioassay can be used as a proxy for ichthyotoxicity by comparing the toxicity of five strains of Prymnesium parvum toward rainbow trout (Oncorhynchus mykiss, 10 g) and the microalga Teleaulax acuta. No relationship between median effective concentrations (EC50s) on fish and median lethal concentrations (LC50s) on algae was observed in the 5 strains showing that a microalgal bioassay cannot be used as a proxy for ichthyotoxicity. Fish were more sensitive to P. parvum with EC50s ranging from 6×10(3) to 40×10(3) cells ml(-1), compared to the test alga where LC50s ranged from 30×10(3) to nearly non-toxic at 500×10(3) cells ml(-1). In addition, the cellular concentrations of two recently suggested ichthyotoxins produced by P. parvum, the "golden algae toxins", GAT 512 and a novel GAT 510, did not show any relationship to either ichthyotoxicity or allelopathy, and are not the biologically relevant toxins, but are simply lipids found in algal chloroplasts. Finally, we demonstrate that the recently suggested ichthyotoxin, oleamide, could not be detected in any of the five P. parvum strains above the limit of detection, nor was it found in a (13)C-labeled strain. Instead we document that oleamide can easily be extracted from plastic materials, which may have been the source of oleamide reported previously.


Asunto(s)
Alelopatía/fisiología , Haptophyta/química , Haptophyta/fisiología , Oncorhynchus mykiss , Animales , Bioensayo/normas , Branquias/efectos de los fármacos , Dosificación Letal Mediana , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA