Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Bot ; 110(7): e16186, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183532

RESUMEN

PREMISE: Flower damage caused by florivores often has negative consequences for plant reproduction. However, the factors affecting plant-florivore interactions are still poorly understood, especially the role of abiotic factors and interspecific variation in florivory within ecosystems. Thus, the patterns of florivory levels and its consequences for plant communities need to be investigated further. METHODS: We assessed the influence of abiotic factors related to climatic seasonality, of phylogenetic relationships among plants, and of functional attributes associated with attractiveness to pollinators on florivory incidence and intensity in the Pantanal, the world's largest tropical wetland. Between December 2020 and November 2021, the percentage of flowers attacked (incidence) and petal area removed (intensity) by florivores were examined in 51 species from 25 families, considering flowering season, the substrate where the plants occur, and flower attributes as potentially determining factors on florivory levels. RESULTS: Phylogeny and environmental factors did not have a significant influence on florivory. The only determinant of interspecific variation in florivory incidence and intensity was flower size, where larger flowers experienced higher florivory levels regardless of season and substrate, while flower arrangement and color were not significant factors. CONCLUSIONS: Our study is one of the first to estimate the community-wide effects of biotic and abiotic factors on both the incidence and the intensity of florivory. The magnitude of this plant-florivore interaction may reduce reproductive success and entail selective pressures on plant attractiveness to pollinators.


Asunto(s)
Ecosistema , Humedales , Filogenia , Flores , Reproducción , Plantas , Polinización
2.
New Phytol ; 233(1): 132-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34363707

RESUMEN

Florivory is an ancient interaction which has rarely been quantified due to a lack of standardized protocols, thus impairing biogeographical and phylogenetic comparisons. We created a global, continuously updated, open-access database comprising 180 species and 64 families to compare floral damage between tropical and temperate plants, to examine the effects of plant traits on floral damage, and to explore the eco-evolutionary dynamics of flower-florivore interactions. Flower damage is widespread across angiosperms, but was two-fold higher in tropical vs temperate species, suggesting stronger fitness impacts in the tropics. Flowers were mostly damaged by chewers, but neither flower color nor symmetry explained differences in florivory. Herbivory and florivory levels were positively correlated within species, even though the richness of the florivore community does not affect florivory levels. We show that florivory impacts plant fitness via multiple pathways and that ignoring this interaction makes it more difficult to obtain a broad understanding of the ecology and evolution of angiosperms. Finally, we propose a standardized protocol for florivory measurements, and identify key research avenues that will help fill persistent knowledge gaps. Florivory is expected to be a central research topic in an epoch characterized by widespread decreases in insect populations that comprise both pollinators and florivores.


Asunto(s)
Flores , Magnoliopsida , Animales , Herbivoria , Insectos , Filogenia , Polinización
3.
Ecology ; 102(4): e03301, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565639

RESUMEN

Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.

4.
Environ Entomol ; 47(6): 1479-1484, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30256920

RESUMEN

Fluctuating asymmetry (FA) is a widely used tool to detect developmental instability and plants under stressful conditions are expected to exhibit increased values of asymmetry, as well as higher levels of herbivory. This study evaluated whether dust from roads can cause major deviations in the axis of symmetry of leaves of the pioneer plant species Cecropia pachystachya Trécul (Urticaceae). It was also investigated whether plants exposed to dust have greater nitrogen content and higher levels of herbivory levels. Ten leaves of 20 individuals of C. pachystachya were collected on two roads with different levels of dust deposition and a control area. FA was calculated as the size-scaled difference between the right (RW) and left (LW) leaf widths and leaf area removed was determined by the ratio between leaf area removed and total leaf area. C. pachystachya plants in areas under strong influence of dust pollution exhibited the highest FA values (0.279 cm), whereas plants in the control area exhibited the lowest. A positive relationship between levels of leaf area removed by insects and a gradient of dust pollution was also observed. Differences in foliar nitrogen concentration among sampling areas indicated differences in leaf quality and influenced herbivory levels of Cecropia. This study indicated that FA can be used as an indicator of developmental instability of plants and those individuals under the impact of road dust and pollution might be more susceptible to insect attack.


Asunto(s)
Cecropia/crecimiento & desarrollo , Contaminación Ambiental/efectos adversos , Herbivoria , Hojas de la Planta/crecimiento & desarrollo , Estrés Fisiológico , Cecropia/metabolismo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA