Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Obstet Gynecol Scand ; 103(5): 897-906, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339766

RESUMEN

INTRODUCTION: This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS: The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS: The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS: The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements.


Asunto(s)
Cuerpo Calloso , Imagen por Resonancia Magnética , Femenino , Humanos , Biomarcadores , Lóbulo Límbico , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Reproducibilidad de los Resultados , Embarazo
2.
Cereb Cortex ; 31(7): 3536-3550, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33704445

RESUMEN

The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.


Asunto(s)
Feto/embriología , Lóbulo Límbico/embriología , Neocórtex/embriología , Telencéfalo/embriología , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Encéfalo/patología , Feto/diagnóstico por imagen , Feto/patología , Edad Gestacional , Humanos , Ventrículos Laterales/diagnóstico por imagen , Ventrículos Laterales/embriología , Ventrículos Laterales/patología , Lóbulo Límbico/diagnóstico por imagen , Lóbulo Límbico/patología , Imagen por Resonancia Magnética , Neocórtex/diagnóstico por imagen , Neocórtex/patología , Tamaño de los Órganos , Telencéfalo/diagnóstico por imagen , Telencéfalo/patología
3.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897768

RESUMEN

The extracellular matrix (ECM) is an important regulator of excitability and synaptic plasticity, especially in its highly condensed form, the perineuronal nets (PNN). In patients with drug-resistant mesial temporal lobe epilepsy (MTLE), hippocampal sclerosis type 1 (HS1) is the most common histopathological finding. This study aimed to evaluate the ECM profile of HS1 in surgically treated drug-resistant patients with MTLE in correlation to clinical findings. Hippocampal sections were immunohistochemically stained for aggrecan, neurocan, versican, chondroitin-sulfate (CS56), fibronectin, Wisteria floribunda agglutinin (WFA), a nuclear neuronal marker (NeuN), parvalbumin (PV), and glial-fibrillary-acidic-protein (GFAP). In HS1, besides the reduced number of neurons and astrogliosis, we found a significantly changed expression pattern of versican, neurocan, aggrecan, WFA-specific glycosylation, and a reduced number of PNNs. Patients with a lower number of epileptic episodes had a less intense diffuse WFA staining in Cornu Ammonis (CA) fields. Our findings suggest that PNN reduction, changed ECM protein, and glycosylation expression pattern in HS1 might be involved in the pathogenesis and persistence of drug-resistant MTLE by contributing to the increase of CA pyramidal neurons' excitability. This research corroborates the validity of ECM molecules and their modulators as a potential target for the development of new therapeutic approaches to drug-resistant epilepsy.


Asunto(s)
Gliosis , Neurocano , Agrecanos/metabolismo , Matriz Extracelular/metabolismo , Gliosis/metabolismo , Hipocampo/metabolismo , Humanos , Neurocano/metabolismo , Esclerosis/metabolismo , Versicanos/metabolismo
4.
Neuroimage ; 210: 116553, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31972277

RESUMEN

The periventricular crossroads have been described as transient structures of the fetal brain where major systems of developing fibers intersect. The triangular parietal crossroad constitutes one major crossroad region. By combining in vivo and post-mortem fetal MRI with histological and immunohistochemical methods, we aimed to characterize these structures. Data from 529 in vivo and 66 post-mortem MRI examinations of fetal brains between gestational weeks (GW) 18-39 were retrospectively reviewed. In each fetus, the area adjacent to the trigone of the lateral ventricles at the exit of the posterior limb of the internal capsule (PLIC) was assessed with respect to signal intensity, size, and shape on T2-weighted images. In addition, by using in vivo diffusion tensor imaging (DTI), the main fiber pathways that intersect in these areas were identified. In order to explain the in vivo features of the parietal crossroads (signal intensity and developmental profile), we analyzed 23 post-mortem fetal human brains, between 16 and â€‹40 GW of age, processed by histological and immunohistochemical methods. The parietal crossroads were triangular-shaped areas with the base in the continuity of the PLIC, adjacent to the germinal matrix and the trigone of the lateral ventricles, with the tip pointing toward the subplate. These areas appeared hyperintense to the subplate, and corresponded to a convergence zone of the developing external capsule, the PLIC, and the fronto-occipital association fibers. They were best detected between GW 25-26, and, at term, they became isointense to the adjacent structures. The immunohistochemical results showed a distinct cellular, fibrillar, and extracellular matrix arrangement in the parietal crossroads, depending on the stage of development, which influenced the MRI features. The parietal crossroads are transient, but important structures in white matter maturation and their damage may be indicative of a poor prognosis for a fetus with regard to neurological development. In addition, impairment of this region may explain the complex neurodevelopmental deficits in preterm infants with periventricular hypoxic/ischemic or inflammatory lesions.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Neuroimagen/métodos , Diagnóstico Prenatal/métodos , Telencéfalo , Sustancia Blanca , Autopsia , Imagen de Difusión Tensora/métodos , Femenino , Feto , Edad Gestacional , Humanos , Inmunohistoquímica , Cápsula Interna/anatomía & histología , Cápsula Interna/diagnóstico por imagen , Cápsula Interna/enzimología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/embriología , Embarazo , Telencéfalo/anatomía & histología , Telencéfalo/diagnóstico por imagen , Telencéfalo/embriología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/embriología
5.
Cereb Cortex ; 29(11): 4709-4724, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30722016

RESUMEN

To uncover the ontogenesis of the human indusium griseum (IG), 28 post-mortem fetal human brains, 12-40 postconceptional weeks (PCW) of age, and 4 adult brains were analyzed immunohistochemically and compared with post-mortem magnetic resonance imaging (MRI) of 28 fetal brains (14-41 PCW). The morphogenesis of the IG occurred between 12 and 15 PCW, transforming the bilateral IG primordia into a ribbon-like cortical lamina. The histogenetic transition of sub-laminated zones into the three-layered cortical organization occurred between 15 and 35 PCW, concomitantly with rapid cell differentiation that occurred from 18 to 28 PCW and the elaboration of neuronal connectivity during the entire second half of gestation. The increasing number of total cells and neurons in the IG at 25 and 35 PCW confirmed its continued differentiation throughout this period. High-field 3.0 T post-mortem MRI enabled visualization of the IG at the mid-fetal stage using T2-weighted sequences. In conclusion, the IG had a distinct histogenetic differentiation pattern than that of the neighboring intralimbic areas of the same ontogenetic origin, and did not show any signs of regression during the fetal period or postnatally, implying a functional role of the IG in the adult brain, which is yet to be disclosed.


Asunto(s)
Lóbulo Límbico/citología , Lóbulo Límbico/embriología , Neuronas/citología , Neuronas/fisiología , Recuento de Células , Diferenciación Celular , Femenino , Técnicas Histológicas , Humanos , Imagen por Resonancia Magnética , Masculino
6.
Mol Neurobiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958887

RESUMEN

Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.

7.
Front Cell Dev Biol ; 10: 810980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295859

RESUMEN

This study was designed in a rat model to determine the hallmarks of possible permanent behavioral and structural brain alterations after a single moderate hypoxic insult. Eighty-two Wistar Han (RccHan: WIST) rats were randomly subjected to hypoxia (pO2 73 mmHg/2 h) or normoxia at the first postnatal day. The substantially increased blood lactate, a significantly decreased cytochrome-C-oxygenase expression in the brain, and depleted subventricular zone suggested a high vulnerability of subset of cell populations to oxidative stress and consequent tissue response even after a single, moderate, hypoxic event. The results of behavioral tests (open-field, hole-board, social-choice, and T-maze) applied at the 30-45th and 70-85th postnatal days revealed significant hyperactivity and a slower pace of learning in rats subjected to perinatal hypoxia. At 3.5 months after hypoxic insult, the histochemical examination demonstrated a significantly increased number of specific extracellular matrix-perineuronal nets and increased parvalbumin expression in a subpopulation of interneurons in the medial and retrosplenial cingulate cortex of these animals. Conclusively, moderate perinatal hypoxia in rats causes a long-lasting reorganization of the connectivity in the cingulate cortex and consequent alterations of related behavioral and cognitive abilities. This non-invasive hypoxia model in the rat successfully and complementarily models the moderate perinatal hypoxic injury in fetuses and prematurely born human babies and may enhance future research into new diagnostic and therapeutic strategies for perinatal medicine.

8.
Nat Commun ; 13(1): 633, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110543

RESUMEN

The choroid plexus secretes cerebrospinal fluid and is critical for the development and function of the brain. In the telencephalon, the choroid plexus epithelium arises from the Wnt- expressing cortical hem. Canonical Wnt signaling pathway molecules such as nuclear ß-CATENIN are expressed in the mouse and human embryonic choroid plexus epithelium indicating that this pathway is active. Point mutations in human ß-CATENIN are known to result in the constitutive activation of canonical Wnt signaling. In a mouse model that recapitulates this perturbation, we report a loss of choroid plexus epithelial identity and an apparent transformation of this tissue to a neuronal identity. Aspects of this phenomenon are recapitulated in human embryonic stem cell derived organoids. The choroid plexus is also disrupted when ß-Catenin is conditionally inactivated. Together, our results indicate that canonical Wnt signaling is required in a precise and regulated manner for normal choroid plexus development in the mammalian brain.


Asunto(s)
Plexo Coroideo/metabolismo , Epitelio/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Plexo Coroideo/patología , Femenino , Humanos , Masculino , Ratones , Telencéfalo/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Eur J Paediatr Neurol ; 35: 67-73, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34653829

RESUMEN

In this study we compare temporal lobe (TL) signal intensity (SI) profiles, along with the average thicknesses of the transient zones obtained from postmortem MRI (pMRI) scans and corresponding histological slices, to the frontal lobe (FL) SI and zone thicknesses, in normal fetal brains. The purpose was to assess the synchronization of the corticogenetic processes in different brain lobes. Nine postmortem human fetal brains without cerebral pathologies, from 19 to 24 weeks of gestation (GW) were analyzed on T2-weighted 3T pMRI, at the coronal level of the thalamus and basal ganglia. The SI profiles of the transient zones in the TL correlate well spatially and temporally to the signal intensity profile of the FL. During the examined period, in the TL, the intermediate and subventricular zone are about the size of the subplate zone (SP), while the superficial SP demonstrates the highest signal intensity. The correlation of the SI profiles and the distributions of the transient zones in the two brain lobes, indicates a time-aligned histogenesis during this narrow time window. The 3TpMRI enables an assessment of the regularity of lamination patterns in the fetal telencephalic wall, upon comparative evaluation of sizes of the transient developmental zones and the SI profiles of different cortical regions. A knowledge of normal vs. abnormal transient lamination patterns and the SI profiles is a prerequisite for further advancement of the MR diagnostic tools needed for early detection of developmental brain pathologies prenatally, especially mild white matter injuries such as lesions of TL due to prenatal cytomegalovirus infections, or cortical malformations.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Autopsia , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Embarazo
10.
J Neurosci Methods ; 332: 108547, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31830545

RESUMEN

BACKGROUND: There is a need for highly sensitive and specific tests and biomarkers that would allow preclinical diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD), which would also enable timely intervention. NEW METHOD: We have developed a new system (ALZENTIA) to help detect early MCI, mainly caused by AD. The system is based on a hidden-goal task (HGT) in which the human subject has to find a target that is not visible; as such, the navigation is based on a previously memorized target position, in relation to the starting position (egocentric variant) and/or other navigational landmarks (allocentric variant of the task). We present our preliminary results obtained in 33 patients with MCI and 91 healthy controls (HC). RESULTS AND COMPARISON WITH EXISTING METHODS: Between-group differences in the average error measured in allocentric, egocentric, and combined allocentric-egocentric subtests were statistically significant in MCI compared to HC. The high negative predictive values suggested high discriminative capacity and diagnostic potential for the HGT test as a tool to detect subjects in healthy population who will progress to MCI. Considering the low sensitivity of the Mini-Mental Status Examination and Montreal Cognitive Assessment tests, we believe that HGT can improve early identification of MCI patients who will progress to AD. CONCLUSION: The HGT carried out with the ALZENTIA system proved to be a reliable screening test to identify individuals with MCI from an aging cohort.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Objetivos , Humanos , Pruebas Neuropsicológicas , Orientación Espacial , Percepción Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA