Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cell Sci ; 125(Pt 24): 6071-83, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23038774

RESUMEN

In humans, loss of SHOX gene function is responsible for the mesomelic short stature characteristic of Turner syndrome, Leri-Weill dyschondrosteosis, and Langer dysplasia. In a mouse model of SHOX deficiency, Prrx1-Cre-driven limb-specific deletion of the paralogous gene Shox2 results in severe rhizomelia. In this study, we show that Col2a1-Cre-driven deletion of Shox2 in developing chondrocytes also results in shortening of the stylopodial skeleton (i.e. humerus, femur) and that this rhizomelia is due to precocious chondrocyte maturation and hypertrophy. We demonstrate, using the micromass culture model system, that increased BMP activity triggers accelerated maturation and hypertrophy in Col2a1-Cre Shox2 mutant chondrocytes and we confirm in vivo that elevated transcript levels and expanded expression domains of Bmp2 and 4 are associated with premature formation of the hypertrophic zone in mutant humeri. In micromass cultures of Prrx1-Cre Shox2 mutant limb cells, we find that Shox2 deletion in undifferentiated mesenchymal cells results in increased BMP activity that enhances early chondrogenesis, but is insufficient to provoke chondrocyte maturation and hypertrophy. Similarly, shRNA-mediated Shox2 knockdown in multipotent C3H10T1/2 cells and primary mouse bone marrow mesenchymal stem cells results in spontaneous chondrogenesis in the absence of chondrostimulation, but again fails to induce progression through the later stages of chondrogenic differentiation. Importantly, exogenous BMP supplementation can overcome the block to maturation and hypertrophy caused by Shox2 depletion prior to overt chondrogenesis. Thus, we provide evidence that Shox2 regulates progression through chondrogenesis at two distinct stages--the onset of early differentiation and the transition to maturation and hypertrophy.


Asunto(s)
Condrogénesis/fisiología , Proteínas de Homeodominio/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Extremidades , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
J Cell Physiol ; 224(1): 178-86, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20232315

RESUMEN

Adult human bone marrow-derived multipotent progenitor cells (MPCs) are able to differentiate into a variety of specialized cell types, including chondrocytes, and are considered a promising candidate cell source for use in cartilage tissue engineering. In this study, we examined the regulation of MPC chondrogenesis by mitogen-activated protein kinases in an attempt to better understand how to generate hyaline cartilage in the laboratory that more closely resembles native tissue. Specifically, we employed the high-density pellet culture model system to assess the roles of ERK5 and ERK1/2 pathway signaling in MPC chondrogenesis. Western blotting revealed that high levels of ERK5 phosphorylation correlate with low levels of MPC chondrogenesis and that as TGF-beta 3-enhanced MPC chondrogenesis proceeds, phospho-ERK5 levels steadily decline. Conversely, levels of phospho-ERK1/2 paralleled the progression of MPC chondrogenesis. siRNA-mediated knockdown of ERK5 pathway components MEK5 and ERK5 resulted in increased MPC pellet mRNA transcript levels of the cartilage-characteristic marker genes SOX9, COL2A1, AGC, L-SOX5, and SOX6, as well as enhanced accumulation of SOX9 protein, collagen type II protein, and Alcian blue-stainable proteoglycan. In contrast, knockdown of ERK1/2 pathway members MEK1 and ERK1 decreased expression of all chondrogenic markers tested. Finally, overexpression of MEK5 and ERK5 also depressed MPC chondrogenesis, as indicated by diminished activity of a co-transfected collagen II promoter-luciferase reporter construct. In conclusion, our results suggest a novel role for the ERK5 pathway as an important negative regulator of adult human MPC chondrogenesis and illustrate that the ERK5 and ERK1/2 kinase cascades play opposing roles regulating MPC cartilage formation.


Asunto(s)
Células Madre Adultas/enzimología , Células de la Médula Ósea/enzimología , Condrogénesis , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Células Madre Multipotentes/enzimología , Células Madre/enzimología , Anciano , Anciano de 80 o más Años , Cartílago/metabolismo , Diferenciación Celular , Células Cultivadas , Condrogénesis/genética , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 7 Activada por Mitógenos/genética , Fosforilación , Interferencia de ARN , ARN Mensajero/metabolismo , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta3/metabolismo
3.
J Cell Biochem ; 109(1): 265-76, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19937731

RESUMEN

Cytoskeletal proteins play important regulatory roles in a variety of cellular processes, including proliferation, migration, and differentiation. However, whereas actin and tubulin have established roles regulating developmental chondrogenesis, there is no evidence supporting a function for the intermediate filament vimentin in embryonic cartilage formation. We hypothesized that vimentin may regulate the chondrogenic differentiation of adult multipotent progenitor cells (MPCs), such as those involved in cartilage formation during bone fracture repair. As our model of adult progenitor cell chondrogenesis, we employed high-density pellet cultures of human bone marrow-derived MPCs. siRNA-mediated knockdown of vimentin mRNA and protein triggered a reduction in the extent of MPC cartilage formation, as evidenced by depressed accumulation of mRNAs for the cartilage-specific marker genes aggrecan and collagen type II, as well as reduced levels of Alcian blue-stainable proteoglycan and collagen II protein in the extracellular matrix. Moreover, mRNA and protein levels for the chondro-regulatory transcription factors SOX5, SOX6, and SOX9 were diminished by vimentin knockdown. Depleted cellular vimentin also induced a drastic reduction in PKA phosphorylation levels but did not affect the phosphorylation of multiple other chondro-regulatory kinases and transcription factors, including ERK1/2, p38, Smad2, and Smad1/5/8. Importantly, siRNA-mediated knockdown of PKA C-alpha mRNA and protein mimicked the reduction in chondrogenesis caused by diminished cellular vimentin. Finally, overexpression of vimentin in MPCs significantly enhanced the activity of a transfected collagen II promoter-luciferase reporter gene. In conclusion, we describe a novel role for the intermediate filament vimentin as a positive regulator of adult human bone marrow-derived MPC chondrogenesis.


Asunto(s)
Células de la Médula Ósea/metabolismo , Condrogénesis/fisiología , Células Madre Multipotentes/metabolismo , Transducción de Señal/fisiología , Vimentina/metabolismo , Western Blotting , Electroporación , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Interferente Pequeño , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXD/metabolismo , Factores de Transcripción/metabolismo , Transfección
4.
Birth Defects Res C Embryo Today ; 87(4): 351-71, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19960542

RESUMEN

In recent years, there has been a great deal of interest in the development of regenerative approaches to produce hyaline cartilage ex vivo that can be utilized for the repair or replacement of damaged or diseased tissue. It is clinically imperative that cartilage engineered in vitro mimics the molecular composition and organization of and exhibits biomechanical properties similar to persistent hyaline cartilage in vivo. Experimentally, much of our current knowledge pertaining to the regulation of cartilage formation, or chondrogenesis, has been acquired in vitro utilizing high-density cultures of undifferentiated chondroprogenitor cells stimulated to differentiate into chondrocytes. In this review, we describe the extracellular matrix molecules, nuclear transcription factors, cytoplasmic protein kinases, cytoskeletal components, and plasma membrane receptors that characterize cells undergoing chondrogenesis in vitro and regulate the progression of these cells through the chondrogenic differentiation program. We also provide an extensive list of growth factors and other extracellular signaling molecules, as well as chromatin remodeling proteins such as histone deacetylases, known to regulate chondrogenic differentiation in culture. In addition, we selectively highlight experiments that demonstrate how an understanding of normal hyaline cartilage formation can lead to the development of novel cartilage tissue engineering strategies. Finally, we present directions for future studies that may yield information applicable to the in vitro generation of hyaline cartilage that more closely resembles native tissue.


Asunto(s)
Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis/fisiología , Animales , Cartílago Articular/citología , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Condrogénesis/efectos de los fármacos , Colágeno/metabolismo , Citoesqueleto/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/metabolismo , Glicosaminoglicanos/metabolismo , Sustancias de Crecimiento/metabolismo , Sustancias de Crecimiento/farmacología , Histona Desacetilasas/metabolismo , Humanos , Cartílago Hialino/citología , Cartílago Hialino/crecimiento & desarrollo , Cartílago Hialino/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Fenotipo , Proteoglicanos/metabolismo , Factores de Transcripción/metabolismo
5.
Birth Defects Res C Embryo Today ; 84(2): 131-54, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18546337

RESUMEN

The majority of bones comprising the adult vertebrate skeleton are generated from hyaline cartilage templates that form during embryonic development. A process known as endochondral ossification is responsible for the conversion of these transient cartilage anlagen into mature, calcified bone. Endochondral ossification is a highly regulated, multistep cell specification program involving the initial differentiation of prechondrogenic mesenchymal cells into hyaline chondrocytes, terminal differentiation of hyaline chondrocytes into hypertrophic chondrocytes, and finally, apoptosis of hypertrophic chondrocytes followed by bone matrix deposition. Recently, extensive research has been carried out describing roles for the three major mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase 1/2 (ERK1/2), p38, and c-jun N-terminal kinase (JNK) pathways, in the successive stages of chondrogenic differentiation. In this review, we survey this research examining the involvement of ERK1/2, p38, and JNK pathway signaling in all aspects of the chondrogenic differentiation program from embryonic through postnatal stages of development. In addition, we summarize evidence from in vitro studies examining MAPK function in immortalized chondrogenic cell lines and adult mesenchymal stem cells. We also provide suggestions for future studies that may help ameliorate existing confusion concerning the specific roles of MAPK signaling at different stages of chondrogenesis.


Asunto(s)
Cartílago/embriología , Condrogénesis/fisiología , Esbozos de los Miembros/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Cartílago/citología , Cartílago/patología , Diferenciación Celular/fisiología , Cara/embriología , Homeostasis , Humanos , Hipertrofia , MAP Quinasa Quinasa 4/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osificación Heterotópica , Osteogénesis , Monoéster Fosfórico Hidrolasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/fisiología
6.
Sci Rep ; 8(1): 14292, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30250174

RESUMEN

Haploinsufficiency of the human SHOX gene causes Léri-Weill dyschondrosteosis (LWD), characterized by shortening of the middle segments of the limbs and Madelung deformity of the wrist. As many as 35% of LWD cases are caused by deletions of non-coding sequences downstream of SHOX that presumably remove an enhancer or enhancers necessary for SHOX expression in developing limbs. We searched for these active sequences using a transgenic mouse assay and identified a 563 basepair (bp) enhancer with specific activity in the limb regions where SHOX functions. This enhancer has previously escaped notice because of its poor evolutionary conservation, although it does contain 100 bp that are conserved in non-rodent mammals. A primary cell luciferase assay confirmed the enhancer activity of the conserved core sequence and demonstrated that putative HOX binding sites are required for its activity. This enhancer is removed in most non-coding deletions that cause LWD. However, we did not identify any likely pathogenic variants of the enhancer in a screen of 124 LWD individuals for whom no causative mutation had been found, suggesting that only larger deletions in the region commonly cause LWD. We hypothesize that loss of this enhancer contributes to the pathogenicity of deletions downstream of SHOX.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Proteína de la Caja Homeótica de Baja Estatura/genética , Animales , Emparejamiento Base/genética , Secuencia de Bases , Sitios de Unión , Secuencia Conservada/genética , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Genoma , Trastornos del Crecimiento/genética , Humanos , Luciferasas/metabolismo , Ratones Transgénicos , Osteocondrodisplasias/genética , Proteína de la Caja Homeótica de Baja Estatura/metabolismo , Transgenes
7.
Biotechniques ; 56(2): 85-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24502798

RESUMEN

Micromass cultures of primary embryonic limb mesenchyme are a valuable model system for studying cartilage formation in vitro. However, high efficiency introduction of plasmid DNA into this hard-to-transfect cell type typically results in considerable cell death and significantly impeded chondrogenesis when the cells are subsequently plated in high density micromass. Here, we describe a novel method in which square wave pulse electroporation of chick embryo wing bud mesenchyme suspended in protective sucrose buffer results in high efficiency transfection without substantially affecting micromass culture cell viability or chondrogenic differentiation potential. Furthermore, we show that this protocol can be employed, along with effector gene expression vectors, to generate observable changes in the amount of cartilage tissue formed in micromass, unlike lower efficiency, higher cytotoxicity techniques that require co-transfection of reporter plasmids to monitor changes in the extent of chondrogenesis and correct for differences in cell viability.


Asunto(s)
ADN/metabolismo , Electroporación/métodos , Mesodermo/citología , Sacarosa/química , Transfección/métodos , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Plásmidos/genética
8.
Stem Cell Res Ther ; 1(2): 11, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20637060

RESUMEN

INTRODUCTION: Bone marrow (BM) stroma currently represents the most common and investigated source of mesenchymal progenitor cells (MPCs); however, comparable adult progenitor or stem cells have also been isolated from a wide variety of tissues. This study aims to assess the functional similarities of MPCs from different tissues and to identify specific factor(s) related to their multipotency. METHODS: For this purpose, we directly compared MPCs isolated from different adult tissues, including bone marrow, tonsil, muscle, and dental pulp. We first examined and compared proliferation rates, immunomodulatory properties, and multidifferentiation potential of these MPCs in vitro. Next, we specifically evaluated activin A expression profile and activin A:follistatin ratio in MPCs from the four sources. RESULTS: The multidifferentiation potential of the MPCs is correlated with activin A level and/or the activin A:follistatin ratio. Interestingly, by siRNA-mediated activin A knockdown, activin A was shown to be required for the chondrogenic and osteogenic differentiation of MPCs. These findings strongly suggest that activin A has a pivotal differentiation-related role in the early stages of chondrogenesis and osteogenesis while inhibiting adipogenesis of MPCs. CONCLUSIONS: This comparative analysis of MPCs from different tissue sources also identifies bone marrow-derived MPCs as the most potent MPCs in terms of multilineage differentiation and immunosuppression, two key requirements in cell-based regenerative medicine. In addition, this study implicates the significance of activin A as a functional marker of MPC identity.


Asunto(s)
Activinas/metabolismo , Adipogénesis/genética , Condrogénesis/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Activinas/biosíntesis , Activinas/genética , Adulto , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/citología , Folistatina/biosíntesis , Humanos , Inmunohistoquímica/métodos , Terapia de Inmunosupresión , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Persona de Mediana Edad , Músculos/citología , Tonsila Palatina/citología , Interferencia de ARN , ARN Interferente Pequeño
9.
J Cell Physiol ; 211(1): 233-43, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17167778

RESUMEN

Fibroblast growth factors (FGFs) and their receptors play fundamental roles regulating growth, morphogenesis, and cartilage formation in embryonic limbs and facial primordia. However, the intracellular pathways that transduce FGF signals during the differentiation of pluripotent mesenchymal cells into chondrocytes are currently unknown. Our present study demonstrates that FGF8, 4, and 2 treatments exert both inhibitory and stimulatory effects on cartilage differentiation in micromass cultures prepared from mesenchymal cells of the chick embryo wing bud, frontonasal mass, and mandibular arch through activation of the MEK-ERK mitogen-activated protein kinase (MAPK) cascade. In cultures of stage 23/24 and stage 28/29 wing bud mesenchyme, as well as stage 24/25 and stage 28/29 frontonasal cells, FGF treatments depressed cartilage matrix production and decreased transcript levels for three cartilage-specific genes: col2a1, aggrecan, and sox9. Conversely, FGF treatment increased cartilage differentiation in cultures of stage 24/25 and stage 28/29 mandibular mesenchyme. In all cell types, FGF treatment elevated endogenous ERK phosphorylation. Moreover, both the stimulatory effects of FGFs on mandibular chondrogenesis, as well as the inhibitory effects of FGFs on wing mesenchyme and stage 24/25 frontonasal cells, were completely blocked when cultures were treated with MEK inhibitor U0126 or transfected with dominant negative ERK2. Thus, MEK-ERK activation is an essential component of the signal transduction pathway that mediates both positive and negative effects of FGFs 8, 4, and 2 on chondrogenesis in embryonic limb, mandibular, and early-stage frontonasal mesenchyme cells. Interestingly, the effects of FGF on late-stage frontonasal cells appear to be relayed by an ERK-independent system.


Asunto(s)
Condrogénesis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cara , Factores de Crecimiento de Fibroblastos/farmacología , Mandíbula/enzimología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Alas de Animales/enzimología , Animales , Butadienos/farmacología , Cartílago/metabolismo , Células Cultivadas , Embrión de Pollo , Colágeno Tipo II/genética , Elementos de Facilitación Genéticos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Cara/embriología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 4 de Crecimiento de Fibroblastos/farmacología , Factor 8 de Crecimiento de Fibroblastos/farmacología , Genes Dominantes , Humanos , Mandíbula/citología , Mandíbula/efectos de los fármacos , Mandíbula/embriología , Mesodermo/citología , Mesodermo/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alas de Animales/citología , Alas de Animales/efectos de los fármacos , Alas de Animales/embriología
10.
Exp Cell Res ; 312(7): 1079-92, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16457813

RESUMEN

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.


Asunto(s)
Condrogénesis/fisiología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Cara/embriología , Quinasas Quinasa Quinasa PAM/fisiología , Transducción de Señal/fisiología , Animales , Butadienos/farmacología , Cartílago/embriología , Cartílago/enzimología , Células Cultivadas , Embrión de Pollo , Colágeno Tipo II/biosíntesis , Colágeno Tipo II/genética , Elementos de Facilitación Genéticos , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/enzimología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mesodermo/citología , Mesodermo/enzimología , Nitrilos/farmacología
11.
J Biol Chem ; 279(6): 4588-95, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-14617631

RESUMEN

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK kinase cascade, has recently been implicated in the regulation of embryonic cartilage differentiation. However, its precise role in this complex process remains controversial. To more thoroughly examine the role of the MEK-ERK kinase cascade in chondrogenesis, we analyzed the effects of two structurally different pharmacological inhibitors of MEK, the upstream kinase activator of ERK, on chondrocyte differentiation in micromass cultures of embryonic chick limb mesenchyme cells. We found that the MEK inhibitors, U0126 and PD98059, promote increased accumulation of cartilage-characteristic mRNA transcripts for type II collagen, aggrecan, and the transcription factor, Sox9. PD98059 treatment stimulated increased deposition of sulfated glycosaminoglycan into both Alcian blue-stainable cartilage matrix and the surrounding culture medium, whereas U0126 elevated glycosaminoglycan secretion into the medium fraction alone. Both MEK inhibitors increased total type II collagen protein accumulation in micromass culture and elevated the activity of a transfected type II collagen enhancer-luciferase reporter gene. Thus, pharmacological MEK inhibition induced increased expression of multiple chondrocyte differentiation markers. Conversely, transfection of limb mesenchyme cells with a constitutively active MEK1 plasmid resulted in a prominent decrease in the activity of a co-transfected type II collagen enhancer-luciferase reporter gene. Collectively, these findings support the hypothesis that signaling through the MEK-ERK kinase cascade may function as an important inhibitory regulator of embryonic cartilage differentiation.


Asunto(s)
Cartílago/embriología , Cartílago/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Butadienos/farmacología , Embrión de Pollo , Condrogénesis/genética , Condrogénesis/fisiología , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Inhibidores Enzimáticos/farmacología , Extremidades/embriología , Flavonoides/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesodermo/metabolismo , Nitrilos/farmacología , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA