Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Exp Eye Res ; 235: 109643, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37678729

RESUMEN

Proteoglycan 4 (PRG4, lubricin) is a mucin-like glycoprotein present on the ocular surface that has both boundary lubricating and anti-inflammatory properties. Full-length recombinant human PRG4 (rhPRG4) has been shown to be clinically effective in improving signs and symptoms of dry eye disease (DED). In vitro, rhPRG4 has been shown to reduce inflammation-induced cytokine production and NFκB activity in corneal epithelial cells, as well as to bind to and inhibit MMP-9 activity. A different form of recombinant human lubricin (ECF843), produced from the same cell line as rhPRG4 but manufactured using a different process, was recently assessed in a DED clinical trial. However, ECF843 did not significantly improve signs or symptoms of DED compared to vehicle. Initial published characterization of ECF843 showed it had a smaller hydrodynamic diameter and was less negatively charged than native PRG4. Further examination of the structural and functional properties of ECF843 and rhPRG4 could contribute to the understanding of what led to their disparate clinical efficacy. Therefore, the objective of this study was to characterize and compare rhPRG4 and ECF843 in vitro, both biophysically and functionally. Hydrodynamic diameter and charge were measured by dynamic light scattering (DLS) and zeta potential, respectively. Size and molecular weight was determined for individual species by size exclusion chromatography (SEC) with in-line DLS and multi-angle light scattering (MALS). Bond structure was measured by Raman spectroscopy, and sedimentation properties were measured by analytical ultracentrifugation (AUC). Functionally, MMP-9 inhibition was measured using a commercial MMP-9 activity kit, coefficient of friction was measured using an established boundary lubrication test at a latex-glass interface, and collagen 1-binding ability was measured by quart crystal microbalance with dissipation (QCMD). Additionally, the ability of rhPRG4 and ECF843 to inhibit urate acid crystal formation and cell adhesion was assessed. ECF843 had a significantly smaller hydrodynamic diameter and was less negatively charged than rhPRG4, as assessed by DLS and zeta potential. Size was further explored with SEC-DLS-MALS, which indicated that while rhPRG4 had 3 main peaks, corresponding to monomer, dimer, and multimer as expected, ECF843 had 2 peaks that were similar in size and molecular weight compared to rhPRG4's monomer peak and a third peak that was significantly smaller in both size and molar mass than the corresponding peak of rhPRG4. Raman spectroscopy demonstrated that ECF843 had significantly more disulfide bonds, which are functionally determinant structures, relative to the carbon-carbon backbone compared to rhPRG4, and AUC indicated that ECF843 was more compact than rhPRG4. Functionally, ECF843 was significantly less effective at inhibiting MMP-9 activity and functioning as a boundary lubricant compared to rhPRG4, as well as being slower to bind to collagen 1. Additionally, ECF843 was significantly less effective at inhibiting urate acid crystal formation and at preventing cell adhesion. Collectively, these data demonstrate ECF843 and rhPRG4 are significantly different in both structure and function. Given that a protein's structure sets the foundation for its interactions with other molecules and tissues in vivo, which ultimately determine its function, these differences most likely contributed to the disparate DED clinical trial results.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Ácido Úrico , Humanos , Glicoproteínas/metabolismo , Proteoglicanos/metabolismo , Carbono , Colágeno , Proteínas Recombinantes
2.
Anal Chem ; 93(7): 3337-3342, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33566581

RESUMEN

Structural heterogeneity is a significant challenge complicating (and in some cases making impossible) electrospray ionization mass spectrometry (ESI MS) analysis of noncovalent complexes comprising structurally heterogeneous biopolymers. The broad mass distribution exhibited by such species inevitably gives rise to overlapping ionic signals representing different charge states, resulting in a continuum spectrum with no discernible features that can be used to assign ionic charges and calculate their masses. This problem can be circumvented by using limited charge reduction, which utilizes gas-phase chemistry to induce charge-transfer reactions within ionic populations selected within narrow m/z windows, thereby producing well-defined and readily interpretable charge ladders. However, the ionic signal in native MS typically populates high m/z regions of mass spectra, which frequently extend beyond the precursor ion isolation limits of most commercial mass spectrometers. While the ionic signal of single-chain proteins can be shifted to lower m/z regions simply by switching to a denaturing solvent, this approach cannot be applied to noncovalent assemblies due to their inherent instability under denaturing conditions. An alternative approach explored in this work relies on adding supercharging reagents to protein solutions as a means of increasing the extent of multiple charging of noncovalent complexes in ESI MS without compromising their integrity. This shifts the ionic signal down the m/z scale to the region where ion selection and isolation can be readily accomplished with a front-end quadrupole, followed by limited charge reduction of the isolated ionic population. The feasibility of the new approach is demonstrated using noncovalent complexes formed by hemoglobin with structurally heterogeneous haptoglobin.


Asunto(s)
Hemoglobinas , Espectrometría de Masa por Ionización de Electrospray , Iones , Solventes
3.
Anal Chem ; 92(11): 7565-7573, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32347711

RESUMEN

Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.


Asunto(s)
Antitrombinas/química , Heparina/análisis , Polisacárido Liasas/química , Antitrombinas/metabolismo , Bacteroides/enzimología , Cromatografía en Gel , Heparina/metabolismo , Humanos , Espectrometría de Masas , Simulación de Dinámica Molecular , Polisacárido Liasas/metabolismo , Impresión Tridimensional , Soluciones
4.
J Biol Chem ; 293(1): 324-332, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29150441

RESUMEN

RcnR, a transcriptional regulator in Escherichia coli, derepresses the expression of the export proteins RcnAB upon binding Ni(II) or Co(II). Lack of structural information has precluded elucidation of the allosteric basis for the decreased DNA affinity in RcnR's metal-bound states. Here, using hydrogen-deuterium exchange coupled with MS (HDX-MS), we probed the RcnR structure in the presence of DNA, the cognate metal ions Ni(II) and Co(II), or the noncognate metal ion Zn(II). We found that cognate metal binding altered flexibility from the N terminus through helix 1 and modulated the RcnR-DNA interaction. Apo-RcnR and RcnR-DNA complexes and the Zn(II)-RcnR complex exhibited similar 2H uptake kinetics, with fast-exchanging segments located in the N terminus, in helix 1 (residues 14-24), and at the C terminus. The largest difference in 2H incorporation between apo- and Ni(II)- and Co(II)-bound RcnR was observed in helix 1, which contains the N terminus and His-3, and has been associated with cognate metal binding. 2H uptake in helix 1 was suppressed in the Ni(II)- and Co(II)-bound RcnR complexes, in particular in the peptide corresponding to residues 14-24, containing Arg-14 and Lys-17. Substitution of these two residues drastically affected DNA-binding affinity, resulting in rcnA expression in the absence of metal. Our results suggest that cognate metal binding to RcnR orders its N terminus, decreases helix 1 flexibility, and induces conformational changes that restrict DNA interactions with the positively charged residues Arg-14 and Lys-17. These metal-induced alterations decrease RcnR-DNA binding affinity, leading to rcnAB expression.


Asunto(s)
Cobalto/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Níquel/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cationes Bivalentes/metabolismo , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Espectrometría de Masas , Proteínas Represoras/química , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
5.
Anal Chem ; 91(11): 7189-7198, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31083917

RESUMEN

Metal labeling and ICP MS detection offer an alternative to commonly accepted techniques that are currently used to quantitate exogenous proteins in vivo, but modifying the protein surface with metal-containing groups inevitably changes its biophysical properties and is likely to affect trafficking and biodistribution. The approach explored in this work takes advantage of the presence of hexa-histidine tags in many recombinant proteins, which have high affinity toward a range of metals. While many divalent metals bind to poly histidine sequences reversibly, oxidation of imidazole-bound CoII or RuII is known to result in a dramatic increase of the binding strength. In order to evaluate the feasibility of using imidazole-bound metal oxidation as a means of attaching permanent tags to polyhistidine segments, a synthetic peptide YPDFEDYWMKHHHHHH was used as a model. RuII can be oxidized under ambient (aerobic) conditions, allowing any oxidation damage to the peptide beyond the metal-binding site to be avoided. The resulting peptide-RuIII complex is very stable, with the single hexa-histidine segment capable of accommodating up to three metal ions. Localization of RuIII within the hexa-histidine segment of the peptide was confirmed by tandem mass spectrometry. The RuIII/peptide binding appears to be irreversible, with both low- and high-molecular weight biologically relevant scavengers failing to strip the metal from the peptide. Application of this protocol to labeling a recombinant form of an 80 kDa protein transferrin allowed RuIII to be selectively placed within the His-tag segment. The metal label remained stable in the presence of ubiquitous scavengers and did not interfere with the receptor binding, while allowing the protein to be readily detected in serum at sub-nM concentrations. The results of this work suggest that ruthenium lends itself as an ideal metal tag for selective labeling of His-tag containing recombinant proteins to enable their sensitive detection and quantitation with ICP MS.


Asunto(s)
Rutenio/química , Transferrina/análisis , Humanos , Espectrometría de Masas , Modelos Moleculares , Péptidos/química , Proteínas Recombinantes/sangre
6.
Methods ; 144: 14-26, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29702225

RESUMEN

Interfacing liquid chromatography (LC) with electrospray ionization (ESI) to enable on-line MS detection had been initially implemented using reversed phase LC, which in the past three decades remained the default type of chromatography used for LC/MS and LC/MS/MS studies of protein structure. In contrast, the advantages of other types of LC as front-ends for ESI MS, particularly those that allow biopolymer higher order structure to be preserved throughout the separation process, enjoyed relatively little appreciation until recently. However, the past few years witnessed a dramatic surge of interest in the so-called "native" (with "non-denaturing" being perhaps a more appropriate adjective) LC/MS and LC/MS/MS analyses within the bioanalytical and biophysical communities. This review focuses on recent advances in this field, with an emphasis on size exclusion and ion exchange chromatography as front-end platforms for protein characterization by LC/MS. Also discussed are the benefits provided by the integration of chemical reactions in the native LC/MS analyses, including both ion chemistry in the gas phase (e.g., limited charge reduction for characterization of highly heterogeneous biopolymers) and solution-phase reactions (using the recently introduced technique cross-path reactive chromatography).


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Espectrometría de Masas/métodos , Conformación Proteica , Proteínas/metabolismo , Ligandos , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas/química
7.
Analyst ; 141(3): 853-61, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26646585

RESUMEN

Serum transferrin is a key player in iron homeostasis, and its ability to deliver iron to cells via the endosomal pathway critically depends on the presence of carbonate that binds this protein synergistically with ferric ion. Oxalate is another ubiquitous anionic species that can act as a synergistic anion, and in fact its interaction with transferrin is notably stronger compared to carbonate, preventing the protein from releasing the metal in the endosomal environment. While this raises concerns that high oxalate levels in plasma may interfere with iron delivery to tissues, concentration of free oxalate in blood appears to be a poor predictor of impeded availability of iron, as previous studies showed that it cannot displace carbonate from ferro-transferrin on a physiologically relevant time scale under the conditions mimicing plasma. In this work we present a new method that allows different forms of ferro-transferrin (carbonate- vs. oxalate-bound) to be distinguished from each other by removing this protein from plasma without altering the composition of the protein/metal/synergistic anion complexes, and determining their accurate masses using native electrospray ionization mass spectrometry (ESI MS). The new method has been validated using a mixture of recombinant proteins, followed by its application to the analysis of clinical samples of human plasma, demonstrating that native ESI MS can be used in clinical analysis.


Asunto(s)
Hierro/sangre , Transferrina/metabolismo , Trastorno Autístico/sangre , Carbonatos/sangre , Cromatografía en Gel , Humanos , Oxalatos/sangre , Albúmina Sérica , Espectrometría de Masa por Ionización de Electrospray
8.
Proc Natl Acad Sci U S A ; 110(50): 20087-92, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277803

RESUMEN

Characterization of structure and dynamics of nonnative protein states is important for understanding molecular mechanisms of processes as diverse as folding, binding, aggregation, and enzyme catalysis to name just a few; however, selectively probing local minima within rugged energy landscapes remains a problem. Mass spectrometry (MS) coupled with hydrogen/deuterium exchange (HDX) offers a unique advantage of being able to make a distinction among multiple protein conformers that coexist in solution; however, detailed structural interrogation of such states previously remained out of reach of HDX MS. In this work, we exploited the aforementioned unique feature of HDX MS in combination with the ability of MS to isolate narrow populations of protein ions to characterize individual protein conformers coexisting in solution in equilibrium. Subsequent fragmentation of the protein ions using electron-capture dissociation allowed us to allocate the deuterium distribution along the protein backbone, yielding a backbone-amide protection map for the selected conformer unaffected by contributions from other protein states present in solution. The method was tested with the small regulatory protein ubiquitin (Ub), which is known to form nonnative intermediate states under a variety of mildly denaturing conditions. Protection maps of these intermediate states obtained at residue-level resolution provide clear evidence that they are very similar to the so-called A-state of Ub that is formed in solutions with low pH and high alcohol. Method validation was carried out by comparing the backbone-amide protection map of native Ub with those deduced from high-resolution NMR measurements.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Conformación Proteica , Proteínas/química , Espectrometría de Masas en Tándem/métodos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Ubiquitina/química
9.
Eur J Mass Spectrom (Chichester) ; 21(3): 369-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26307718

RESUMEN

Transferrin (Tf) is an 80 kDa iron-binding protein that is viewed as a promising drug carrier to target the central nervous system as a result of its ability to penetrate the blood-brain barrier. Among the many challenges during the development of Tf-based therapeutics, the sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult because of the presence of abundant endogenous Tf. Herein, we describe the development of a new liquid chromatography-mass spectrometry-based method for the sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous human serum Tf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed (18)O-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision, and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation.


Asunto(s)
Cromatografía Líquida de Alta Presión/normas , Manejo de Especímenes/normas , Espectrometría de Masa por Ionización de Electrospray/normas , Transferrina/líquido cefalorraquídeo , Algoritmos , Animales , Calibración/normas , Cromatografía Líquida de Alta Presión/métodos , Estudios de Factibilidad , Humanos , Ratas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Manejo de Especímenes/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Transferrina/genética , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 109(34): 13544-8, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869744

RESUMEN

A recently designed human growth hormone/transferrin fusion protein (GHT) remains one of the very few examples of a protein capable of eliciting measurable therapeutic response after oral administration. To better understand the underlying factors that resulted in this rare success of nonparenteral protein drug delivery, we analyzed proteolytic stability and receptor binding properties of this protein, the key factors in overcoming the primary barriers to successful oral delivery. Analysis of GHT by a combination of size exclusion chromatography and mass spectrometry revealed that a significant protein population exists in an oligomeric (GHTx) state in addition to the anticipated monomer (GHT1). These states of GHT were evaluated for their survivability in stomach-like conditions, as well as their ability to bind transferrin receptor (TfR). Our results reveal an exceptional stability of GHTx, as well as the preserved ability to bind TfR, a critical first step in crossing the epithelial-intestinal barrier through receptor-mediated transcytosis.


Asunto(s)
Sistemas de Liberación de Medicamentos , Espectrometría de Masas/métodos , Proteínas/química , Transferrina/química , Administración Oral , Cromatografía/métodos , Diseño de Fármacos , Humanos , Hidrólisis , Cinética , Luz , Pepsina A/química , Proteolisis , Receptores de Transferrina/química , Proteínas Recombinantes de Fusión/química , Dispersión de Radiación , Espectrometría de Masa por Ionización de Electrospray/métodos
11.
Anal Chem ; 86(11): 5225-31, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24820935

RESUMEN

Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) has become a potent technique to probe higher-order structures, dynamics, and interactions of proteins. While the range of proteins amenable to interrogation by HDX MS continues to expand at an accelerating pace, there are still a few classes of proteins whose analysis with this technique remains challenging. Disulfide-rich proteins constitute one of such groups: since the reduction of thiol-thiol bonds must be carried out under suboptimal conditions (to minimize the back-exchange), it frequently results in incomplete dissociation of disulfide bridges prior to MS analysis, leading to a loss of signal, inadequate sequence coverage, and a dramatic increase in the difficulty of data analysis. In this work, the dissociation of disulfide-linked peptide dimers produced by peptic digestion of the 80 kDa glycoprotein transferrin in the course of HDX MS experiments is carried out using electron capture dissociation (ECD). ECD results in efficient cleavage of the thiol-thiol bonds in the gas phase on the fast LC time scale and allows the deuterium content of the monomeric constituents of the peptide dimers to be measured individually. The measurements appear to be unaffected by hydrogen scrambling, even when high collisional energies are utilized. This technique will benefit HDX MS measurements for any protein that contains one or more disulfides and the potential gain in sequence coverage and spatial resolution would increase with disulfide bond number.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Disulfuros/análisis , Proteínas/química , Animales , Humanos , Espectrometría de Masas , Modelos Moleculares , Conformación Proteica
12.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38617236

RESUMEN

Sphingolipid activator protein B (saposin B; SapB) is an essential activator of globotriaosylceramide (Gb3) catabolism by α-galactosidase A. However, the manner by which SapB stimulates α-galactosidase A activity remains unknown. To uncover the molecular mechanism of SapB presenting Gb3 to α-galactosidase A, we subjected the fluorescent substrate globotriaosylceramide-nitrobenzoxidazole (Gb3-NBD) to a series of biochemical and structural assays involving SapB. First, we showed that SapB stably binds Gb3-NBD using a fluorescence equilibrium binding assay, isolates Gb3-NBD from micelles, and facilitates α-galactosidase A cleavage of Gb3-NBD in vitro. Second, we crystallized SapB in the presence of Gb3-NBD and validated the ligand-bound assembly. Third, we captured transient interactions between SapB and α-galactosidase A by chemical cross-linking. Finally, we determined the crystal structure of SapB bound to α-galactosidase A. These findings establish general principles for molecular recognition in saposin:hydrolase complexes and highlight the utility of NBD reporter lipids in saposin biochemistry and structural biology.

13.
J Bacteriol ; 195(7): 1381-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23292778

RESUMEN

Rhodopseudomonas palustris assimilates CO2 by the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway. Most genes required for a functional CBB pathway are clustered into the cbbI and cbbII operons, with the cbbI operon subject to control by a LysR transcriptional activator, CbbR, encoded by cbbR, which is divergently transcribed from the cbbLS genes (encoding form I RubisCO) of the cbbI operon. Juxtaposed between the genes encoding CbbR and CbbLS are genes that encode a three-protein two-component system (CbbRRS system) that functions to modify the ability of CbbR to regulate cbbLS expression. Previous studies indicated that the response regulators, as well as various coinducers (effectors), specifically influence CbbR-promoter interactions. In the current study, it was shown via several experimental approaches that the response regulators and coinducers act synergistically on CbbR to influence cbbLS transcription. Synergistic effects on the formation of specific CbbR-DNA complexes were quantified using surface plasmon resonance (SPR) procedures. Gel mobility shift and DNA footprint analyses further indicated structural changes in the DNA arising from the presence of response regulators and coinducer molecules binding to CbbR. Based on previous studies, and especially emphasized by the current investigation, it is clear that protein complexes influence promoter activity and the cbbLS transcription machinery.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Huella de ADN , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Modelos Biológicos , Regiones Promotoras Genéticas , Unión Proteica , Resonancia por Plasmón de Superficie
14.
Biochemistry ; 52(46): 8333-41, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24152109

RESUMEN

It has been previously suggested that large amounts of oxalate in plasma could play a role in autism by binding to the bilobal iron transport protein transferrin (hTF), thereby interfering with iron metabolism by inhibiting the delivery of iron to cells. By examining the effect of the substitution of oxalate for the physiologically utilized synergistic carbonate anion in each lobe of hTF, we sought to provide a molecular basis for or against such a role. Our work clearly shows both qualitatively (6 M urea gels) and quantitatively (kinetic analysis by stopped-flow spectrofluorimetry) that the presence of oxalate in place of carbonate in each binding site of hTF does indeed greatly interfere with the removal of iron from each lobe (in the absence and presence of the specific hTF receptor). However, we also clearly demonstrate that once the iron is bound within each lobe of hTF, neither anion can displace the other. Additionally, as verified by urea gels and electrospray mass spectrometry, formation of completely homogeneous hTF-anion complexes requires that all iron must first be removed and hTF then reloaded with iron in the presence of either carbonate or oxalate. Significantly, experiments described here show that carbonate is the preferred binding partner; i.e., even if an equal amount of each anion is available during the iron loading process, the hTF-carbonate complex is formed.


Asunto(s)
Anemia Ferropénica/fisiopatología , Trastorno Autístico/sangre , Carbonatos/metabolismo , Trastornos Generalizados del Desarrollo Infantil/sangre , Hierro/metabolismo , Oxalatos/sangre , Transferrina/química , Transferrina/metabolismo , Anemia Ferropénica/sangre , Animales , Células Cultivadas , Cricetinae , Humanos , Cinética
15.
Biochim Biophys Acta ; 1820(3): 417-26, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21726602

RESUMEN

BACKGROUND: Transferrin (Tf) is a paradigmatic metalloprotein, which has been extensively studied in the past and still is a focal point of numerous investigation efforts owing to its unique role in iron homeostasis and enormous promise as a component of a wide range of therapies. SCOPE OF REVIEW: Electrospray ionization mass spectrometry (ESI MS) is a potent analytical tool that has been used successfully to study various properties of Tf and Tf-based products, ranging from covalent structure and metal binding to conformation and interaction with their physiological partners. MAJOR CONCLUSIONS: Various ESI MS-based techniques produce unique information on Tf properties and behavior that is highly complementary to information provided by other experimental techniques. GENERAL SIGNIFICANCE: The experimental ESI MS-based techniques developed for Tf studies are not only useful for understanding of fundamental aspects of the iron-binding properties of this protein and optimizing Tf-based therapeutic products, but can also be applied to study a range of other metalloproteins. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.


Asunto(s)
Hierro/metabolismo , Transferrina/química , Transferrina/metabolismo , Sitios de Unión , Humanos , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Masa por Ionización de Electrospray
16.
Anal Chem ; 85(19): 9173-80, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23978257

RESUMEN

Inadequate spatial resolution remains one of the most serious limitations of hydrogen/deuterium exchange-mass spectrometry (HDX-MS), especially when applied to larger proteins (over 30 kDa). Supplementing proteolytic fragmentation of the protein in solution with ion dissociation in the gas phase has been used successfully by several groups to obtain near-residue level resolution. However, the restrictions imposed by the LC-MS/MS mode of operation on the data acquisition time frame makes it difficult in many cases to obtain a signal-to-noise ratio adequate for reliable assignment of the backbone amide protection levels at individual residues. This restriction is lifted in the present work by eliminating the LC separation step from the workflow and taking advantage of the high resolving power and dynamic range of a Fourier transform ion cyclotron resonance-mass spectrometer (FTICR-MS). A residue-level resolution is demonstrated for a peptic fragment of a 37 kDa recombinant protein (N-lobe of human serum transferrin), using electron-capture dissociation as an ion fragmentation tool. The absence of hydrogen scrambling in the gas phase prior to ion dissociation is verified using redundant HDX-MS data generated by FTICR-MS. The backbone protection pattern generated by direct HDX-MS/MS is in excellent agreement with the known crystal structure of the protein but also provides information on conformational dynamics, which is not available from the static X-ray structure.


Asunto(s)
Medición de Intercambio de Deuterio , Electrones , Transferrina/análisis , Ciclotrones , Análisis de Fourier , Humanos , Espectrometría de Masas , Modelos Moleculares , Proteínas Recombinantes/sangre
17.
Anal Chem ; 85(3): 1591-6, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23252501

RESUMEN

Arylsulfatase A is an endogenous enzyme that is responsible for the catabolism and control of sulfatides in humans. Its deficiency results in the accumulation of sulfatides in the cells of the central and peripheral nervous system leading to the destruction of the myelin sheath and resulting in metachromatic leukodystrophy (MLD), a neurodegenerative lysosomal storage disease. A recombinant human form of this glycoprotein (rhASA) is currently under development as an enzyme replacement therapy. At neutral and alkaline pH, this protein exists as a homodimer but converts to an octameric state in the mildly acidic environment of the lysosome, and a failure to form an octamer results in suboptimal catalytic activity (most likely due to a diminished protection from lysosomal proteases). Despite the obvious importance of the rhASA oligomerization process, its mechanistic details remain poorly understood. In this work, we use size exclusion chromatography (SEC) and electrospray ionization mass spectrometry (ESI MS) to monitor the dimer-to-octamer transition as a function of both solution pH and protein concentration. While SEC clearly shows different profiles (i.e., retention time differences) for rhASA when the chromatography is performed at neutral and lysosomal pH, consistent with changing oligomerization states, no resolved peaks could be observed for either octamer or dimer when analyzed at intermediate pH (5.5-6.5). This could be interpreted either as the result of a rapid dimer-to-octamer interconversion on the chromatographic time scale or as a consequence of the presence of previously unidentified intermediate species (e.g., tetramer and/or hexamer). In contrast, ESI MS provides strong evidence of the dimer-to-octamer transition state that occurs when the analysis is performed within a narrow pH range (6.0-7.0). Octamer assembly was shown to be a highly cooperative process with no intermediate states that are populated to detectable levels. A tetrameric state of rhASA exists at equilibrium with a dimer at neutral pH but does not appear to be involved in the octamer assembly process.


Asunto(s)
Cerebrósido Sulfatasa/química , Cromatografía en Gel/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cerebrósido Sulfatasa/análisis , Humanos , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química
18.
Mol Pharm ; 10(5): 1998-2007, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23534953

RESUMEN

Transferrin is a promising drug carrier that has the potential to deliver metals, small organic molecules and therapeutic proteins to cancer cells and/or across physiological barriers (such as the blood-brain barrier). Despite this promise, very few transferrin-based therapeutics have been developed and reached clinical trials. This modest success record can be explained by the complexity and heterogeneity of protein conjugation products, which also pose great challenges to their analytical characterization. In this work, we use lysozyme conjugated to transferrin as a model therapeutic that targets the central nervous system (where its bacteriostatic properties may be exploited to control infection) and develop analytical protocols based on electrospray ionization mass spectrometry to characterize its structure and interactions with therapeutic targets and physiological partners critical for its successful delivery. Mass spectrometry has already become an indispensable tool facilitating all stages of the protein drug development process, and this work demonstrates the enormous potential of this technique in facilitating the development of a range of therapeutically effective protein-drug conjugates.


Asunto(s)
Portadores de Fármacos/química , Muramidasa/química , Transferrina/química , Antibacterianos/administración & dosificación , Antibacterianos/química , Antiinfecciosos/administración & dosificación , Antiinfecciosos/química , Fármacos del Sistema Nervioso Central/administración & dosificación , Fármacos del Sistema Nervioso Central/química , Química Farmacéutica , Humanos , Micrococcus/efectos de los fármacos , Estructura Molecular , Muramidasa/administración & dosificación , Muramidasa/metabolismo , Unión Proteica , Receptores de Transferrina/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Transferrina/administración & dosificación , Transferrina/metabolismo
19.
J Bacteriol ; 194(6): 1350-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22247506

RESUMEN

The cbb(I) region of Rhodopseudomonas palustris (Rp. palustris) contains the cbbLS genes encoding form I ribulose-1,5-bisphosphate (RuBP) carboxylase oxygenase (RubisCO) along with a divergently transcribed regulator gene, cbbR. Juxtaposed between cbbR and cbbLS are the cbbRRS genes, encoding an unusual three-protein two-component (CbbRRS) system that modulates the ability of CbbR to influence cbbLS expression. The nature of the metabolic signals that Rp. palustris CbbR perceives to regulate cbbLS transcription is not known. Thus, in this study, the CbbR binding region was first mapped within the cbbLS promoter by the use of gel mobility shift assays and DNase I footprinting. In addition, potential metabolic coinducers (metabolites) were tested for their ability to alter the cbbLS promoter binding properties of CbbR. Gel mobility shift assays and surface plasmon resonance analyses together indicated that biosynthetic intermediates such as RuBP, ATP, fructose 1,6-bisphosphate, and NADPH enhanced DNA binding by CbbR. These coinducers did not yield identical CbbR-dependent DNase I footprints, indicating that the coinducers caused significant changes in DNA structure. These in vitro studies suggest that cellular signals such as fluctuating metabolite concentrations are perceived by and transduced to the cbbLS promoter via the master regulator CbbR.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Rhodopseudomonas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Huella de ADN , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Fructosadifosfatos/metabolismo , Datos de Secuencia Molecular , NADP/metabolismo , Unión Proteica , Resonancia por Plasmón de Superficie
20.
Mol Microbiol ; 80(3): 756-71, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21362064

RESUMEN

In Rhodopseudomonas palustris CGA010, the LysR type regulator, CbbR, specifically controls transcription of the cbbLS genes encoding form I RubisCO. Previous genetic and physiological studies had indicated that a unique two-component (CbbRRS) system influences CbbR-mediated cbbLS transcription under conditions where CO(2) is the sole carbon source. In this study, we have established direct protein-protein interactions between the response regulators of the CbbRRS system and CbbR, using a variety of techniques. The bacterial two-hybrid system established a specific interaction between CbbR and CbbRR1 (response regulator 1 of the CbbRRS system), confirmed in vitro by chemical cross-linking. In addition, both response regulators (CbbRR1 and CbbRR2) played distinct roles in influencing the CbbR-cbbLS promoter interactions in gel mobility shift assays. CbbRR1 increased the binding affinity of CbbR at the cbb(I) promoter three- to fivefold while CbbRR2 appeared to stabilize CbbR binding. Specific interactions were further supported by surface plasmon resonance (SPR) analyses. In total, the results suggested that both response regulators, with no discernible DNA-binding domains, must interact with CbbR to influence cbbLS expression. Thus the CbbRRS system provides an additional level of transcriptional control beyond CbbR alone, and appears to be significant for potentially fine-tuning cbbLS expression in Rps. palustris.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Rhodopseudomonas/fisiología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Unión Proteica , Mapeo de Interacción de Proteínas , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA