Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(47): 29851-29861, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168716

RESUMEN

Kinetoplastids are unicellular eukaryotic parasites responsible for such human pathologies as Chagas disease, sleeping sickness, and leishmaniasis. They have a single large mitochondrion, essential for the parasite survival. In kinetoplastid mitochondria, most of the molecular machineries and gene expression processes have significantly diverged and specialized, with an extreme example being their mitochondrial ribosomes. These large complexes are in charge of translating the few essential mRNAs encoded by mitochondrial genomes. Structural studies performed in Trypanosoma brucei already highlighted the numerous peculiarities of these mitoribosomes and the maturation of their small subunit. However, several important aspects mainly related to the large subunit (LSU) remain elusive, such as the structure and maturation of its ribosomal RNA. Here we present a cryo-electron microscopy study of the protozoans Leishmania tarentolae and Trypanosoma cruzi mitoribosomes. For both species, we obtained the structure of their mature mitoribosomes, complete rRNA of the LSU, as well as previously unidentified ribosomal proteins. In addition, we introduce the structure of an LSU assembly intermediate in the presence of 16 identified maturation factors. These maturation factors act on both the intersubunit and the solvent sides of the LSU, where they refold and chemically modify the rRNA and prevent early translation before full maturation of the LSU.


Asunto(s)
Leishmania/fisiología , Ribosomas Mitocondriales/ultraestructura , Procesamiento Postranscripcional del ARN/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Trypanosoma cruzi/fisiología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Microscopía por Crioelectrón , Humanos , Leishmania/citología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Ribosomas Mitocondriales/efectos de los fármacos , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Trypanosoma cruzi/citología , Trypanosoma cruzi/efectos de los fármacos
2.
Subcell Biochem ; 96: 433-450, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252739

RESUMEN

Expansion segments (ES) are insertions of a few to hundreds of nucleotides at discrete locations on eukaryotic ribosomal RNA (rRNA) chains. Some cluster around 'hot spots' involved in translation regulation and some may participate in biogenesis. Whether ES play the same roles in different organisms is currently unclear, especially since their size may vary dramatically from one species to another and very little is known about their functions. Most likely, ES variation is linked to adaptation to a particular environment. In this chapter, we compare the interaction networks of ES from four kinetoplastid parasites, which have evolved in diverse insect vectors and mammalian hosts: Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani and Leishmania major. Here, we comparatively analyze ribosome structures from these representative kinetoplastids and ascertain meaningful structural differences from mammalian ribosomes. We base our analysis on sequence alignments and three-dimensional structures of 80S ribosomes solved by cryo-electron microscopy (cryo-EM). Striking differences in size are observed between ribosomes of different parasites, indicating that not all ES are expanded equally. Larger ES are not always matched by large surrounding ES or proteins extensions in their vicinity, a particularity that may lead to clues about their biological function. ES display different species-specific patterns of conservation, which underscore the density of their interaction network at the surface of the ribosome. Making sense of the conservation patterns of ES is part of a global effort to lay the basis for functional studies aimed at discovering unique kinetoplastid-specific sites suitable for therapeutic applications against these human and often animal pathogens.


Asunto(s)
Kinetoplastida/genética , ARN Ribosómico/genética , Ribosomas/metabolismo , Animales , Microscopía por Crioelectrón , Células Eucariotas/metabolismo , Humanos , Kinetoplastida/patogenicidad , Ribosomas/química , Ribosomas/ultraestructura
3.
Nucleic Acids Res ; 44(21): 10491-10504, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906650

RESUMEN

Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence could account for vital yet species-specific mechanisms of translation regulation that would involve stalling, cell survival and antibiotic resistance. Here, we present the first full 70S ribosome structure from Staphylococcus aureus, a Gram-positive pathogenic bacterium, solved by cryo-electron microscopy. Comparative analysis with other known bacterial ribosomes pinpoints several unique features specific to S. aureus around a conserved core, at both the protein and the RNA levels. Our work provides the structural basis for the many studies aiming at understanding translation regulation in S. aureus and for designing drugs against this often multi-resistant pathogen.


Asunto(s)
Proteínas Bacterianas/química , Biosíntesis de Proteínas , ARN Bacteriano/química , Proteínas Ribosómicas/química , Ribosomas/ultraestructura , Staphylococcus aureus/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Thermus thermophilus/química , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
5.
Nat Plants ; 6(4): 377-383, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251374

RESUMEN

The vast majority of eukaryotic cells contain mitochondria, essential powerhouses and metabolic hubs1. These organelles have a bacterial origin and were acquired during an early endosymbiosis event2. Mitochondria possess specialized gene expression systems composed of various molecular machines, including the mitochondrial ribosomes (mitoribosomes). Mitoribosomes are in charge of translating the few essential mRNAs still encoded by mitochondrial genomes3. While chloroplast ribosomes strongly resemble those of bacteria4,5, mitoribosomes have diverged significantly during evolution and present strikingly different structures across eukaryotic species6-10. In contrast to animals and trypanosomatids, plant mitoribosomes have unusually expanded ribosomal RNAs and have conserved the short 5S rRNA, which is usually missing in mitoribosomes11. We have previously characterized the composition of the plant mitoribosome6, revealing a dozen plant-specific proteins in addition to the common conserved mitoribosomal proteins. In spite of the tremendous recent advances in the field, plant mitoribosomes remained elusive to high-resolution structural investigations and the plant-specific ribosomal features of unknown structures. Here, we present a cryo-electron microscopy study of the plant 78S mitoribosome from cauliflower at near-atomic resolution. We show that most of the plant-specific ribosomal proteins are pentatricopeptide repeat proteins (PPRs) that deeply interact with the plant-specific rRNA expansion segments. These additional rRNA segments and proteins reshape the overall structure of the plant mitochondrial ribosome, and we discuss their involvement in the membrane association and mRNA recruitment prior to translation initiation. Finally, our structure unveils an rRNA-constructive phase of mitoribosome evolution across eukaryotes.


Asunto(s)
Brassica/ultraestructura , Ribosomas Mitocondriales/ultraestructura , ARN de Planta/ultraestructura , ARN Ribosómico/ultraestructura , Brassica/genética , Microscopía por Crioelectrón , Evolución Molecular , Modelos Moleculares , Proteínas de Plantas/ultraestructura , Proteínas Ribosómicas/ultraestructura
6.
Cell Rep ; 31(1): 107497, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268096

RESUMEN

In higher eukaryotes, the mRNA sequence in the direct vicinity of the start codon, called the Kozak sequence (CRCCaugG, where R is a purine), is known to influence the rate of the initiation process. However, the molecular basis underlying its role remains poorly understood. Here, we present the cryoelectron microscopy (cryo-EM) structures of mammalian late-stage 48S initiation complexes (LS48S ICs) in the presence of two different native mRNA sequences, ß-globin and histone 4, at overall resolution of 3 and 3.5 Å, respectively. Our high-resolution structures unravel key interactions from the mRNA to eukaryotic initiation factors (eIFs): 1A, 2, 3, 18S rRNA, and several 40S ribosomal proteins. In addition, we are able to study the structural role of ABCE1 in the formation of native 48S ICs. Our results reveal a comprehensive map of ribosome/eIF-mRNA and ribosome/eIF-tRNA interactions and suggest the impact of mRNA sequence on the structure of the LS48S IC.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/ultraestructura , Iniciación de la Transcripción Genética/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Codón Iniciador/genética , Codón Iniciador/ultraestructura , Microscopía por Crioelectrón/métodos , Elementos de Facilitación Genéticos/genética , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Ratones , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Globinas beta/genética , Globinas beta/ultraestructura
7.
Cell Rep ; 33(10): 108476, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296660

RESUMEN

Dicistrovirus intergenic region internal ribosomal entry sites (IGR IRESs) do not require initiator tRNA, an AUG codon, or initiation factors and jumpstart translation from the middle of the elongation cycle via formation of IRES/80S complexes resembling the pre-translocation state. eEF2 then translocates the [codon-anticodon]-mimicking pseudoknot I (PKI) from ribosomal A sites to P sites, bringing the first sense codon into the decoding center. Halastavi árva virus (HalV) contains an IGR that is related to previously described IGR IRESs but lacks domain 2, which enables these IRESs to bind to individual 40S ribosomal subunits. By using in vitro reconstitution and cryoelectron microscopy (cryo-EM), we now report that the HalV IGR IRES functions by the simplest initiation mechanism that involves binding to 80S ribosomes such that PKI is placed in the P site, so that the A site contains the first codon that is directly accessible for decoding without prior eEF2-mediated translocation of PKI.


Asunto(s)
Sitios Internos de Entrada al Ribosoma/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Virus ARN Monocatenarios Positivos/genética , Anticodón , Codón/metabolismo , Microscopía por Crioelectrón/métodos , ADN Intergénico/metabolismo , Sitios Internos de Entrada al Ribosoma/fisiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , Factor 2 de Elongación Peptídica/metabolismo , Factores de Iniciación de Péptidos/genética , Virus ARN Monocatenarios Positivos/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/metabolismo , ARN Viral/genética , Ribosomas/metabolismo , Replicación Viral/genética , Replicación Viral/fisiología , Virus/metabolismo
8.
Cell Rep ; 33(12): 108534, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357443

RESUMEN

Canonical mRNA translation in eukaryotes begins with the formation of the 43S pre-initiation complex (PIC). Its assembly requires binding of initiator Met-tRNAiMet and several eukaryotic initiation factors (eIFs) to the small ribosomal subunit (40S). Compared to their mammalian hosts, trypanosomatids present significant structural differences in their 40S, suggesting substantial variability in translation initiation. Here, we determine the structure of the 43S PIC from Trypanosoma cruzi, the parasite causing Chagas disease. Our structure shows numerous specific features, such as the variant eIF3 structure and its unique interactions with the large rRNA expansion segments (ESs) 9S, 7S, and 6S, and the association of a kinetoplastid-specific DDX60-like helicase. It also reveals the 40S-binding site of the eIF5 C-terminal domain and structures of key terminal tails of several conserved eIFs underlying their activities within the PIC. Our results are corroborated by glutathione S-transferase (GST) pull-down assays in both human and T. cruzi and mass spectrometry data.


Asunto(s)
Biosíntesis de Proteínas/inmunología , Trypanosomatina/patogenicidad , Animales , Mamíferos , Modelos Moleculares
9.
Nat Plants ; 5(1): 106-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30626926

RESUMEN

Mitochondria are responsible for energy production through aerobic respiration, and represent the powerhouse of eukaryotic cells. Their metabolism and gene expression processes combine bacterial-like features and traits that evolved in eukaryotes. Among mitochondrial gene expression processes, translation remains the most elusive. In plants, while numerous pentatricopeptide repeat (PPR) proteins are involved in all steps of gene expression, their function in mitochondrial translation remains unclear. Here we present the biochemical characterization of Arabidopsis mitochondrial ribosomes and identify their protein subunit composition. Complementary biochemical approaches identified 19 plant-specific mitoribosome proteins, of which ten are PPR proteins. The knockout mutations of ribosomal PPR (rPPR) genes result in distinct macroscopic phenotypes, including lethality and severe growth delay. The molecular analysis of rppr1 mutants using ribosome profiling, as well as the analysis of mitochondrial protein levels, demonstrate rPPR1 to be a generic translation factor that is a novel function for PPR proteins. Finally, single-particle cryo-electron microscopy (cryo-EM) reveals the unique structural architecture of Arabidopsis mitoribosomes, characterized by a very large small ribosomal subunit, larger than the large subunit, bearing an additional RNA domain grafted onto the head. Overall, our results show that Arabidopsis mitoribosomes are substantially divergent from bacterial and other eukaryote mitoribosomes, in terms of both structure and protein content.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/química , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Microscopía por Crioelectrón , Técnicas de Inactivación de Genes , Proteínas Mitocondriales/genética , Ribosomas Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Células Vegetales , Proteómica/métodos , ARN de Planta , ARN Ribosómico/química
10.
Structure ; 25(12): 1785-1794.e3, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29107485

RESUMEN

Kinetoplastids are potentially lethal protozoan pathogens affecting more than 20 million people worldwide. There is a critical need for more specific targets for the development of safer anti-kinetoplastid therapeutic molecules that can replace the scarce and highly cytotoxic current drugs. The kinetoplastid ribosome represents a potential therapeutic target due to its relative structural divergence when compared with its human counterpart. However, several kinetoplastid-specific ribosomal features remain uncharacterized. Here, we present the near-atomic cryoelectron microscopy structure of a novel bona fide kinetoplastid-specific ribosomal (r-) protein (KSRP) bound to the ribosome. KSRP is an essential protein located at the solvent face of the 40S subunit, where it binds and stabilizes kinetoplastid-specific domains of rRNA, suggesting its role in ribosome integrity. KSRP also interacts with the r-protein eS6 at a region that is only conserved in kinetoplastids. The kinetoplastid-specific ribosomal environment of KSRP provides a promising target for the design of safer anti-kinetoplastidian drugs.


Asunto(s)
Proteínas Protozoarias/química , Proteínas Ribosómicas/química , Sitios de Unión , Microscopía por Crioelectrón , Leishmania/química , Unión Proteica , Proteínas Protozoarias/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Trypanosoma cruzi/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA