Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 226(4): 595-607, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32939546

RESUMEN

BACKGROUND: This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. METHODS: Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. RESULTS: All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. CONCLUSIONS: Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Vaccinia , Adenoviridae , Adulto , Anticuerpos Antivirales , Humanos , Serogrupo , Vaccinia/inducido químicamente , Virus Vaccinia/genética
2.
PLoS Med ; 19(1): e1003865, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35015777

RESUMEN

BACKGROUND: Reoccurring Ebola outbreaks in West and Central Africa have led to serious illness and death in thousands of adults and children. The objective of this study was to assess safety, tolerability, and immunogenicity of the heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccination regimen in adolescents and children in Africa. METHODS AND FINDINGS: In this multicentre, randomised, observer-blind, placebo-controlled Phase II study, 131 adolescents (12 to 17 years old) and 132 children (4 to 11 years old) were enrolled from Eastern and Western Africa and randomised 5:1 to receive study vaccines or placebo. Vaccine groups received intramuscular injections of Ad26.ZEBOV (5 × 1010 viral particles) and MVA-BN-Filo (1 × 108 infectious units) 28 or 56 days apart; placebo recipients received saline. Primary outcomes were safety and tolerability. Solicited adverse events (AEs) were recorded until 7 days after each vaccination and serious AEs (SAEs) throughout the study. Secondary and exploratory outcomes were humoral immune responses (binding and neutralising Ebola virus [EBOV] glycoprotein [GP]-specific antibodies), up to 1 year after the first dose. Enrolment began on February 26, 2016, and the date of last participant last visit was November 28, 2018. Of the 263 participants enrolled, 217 (109 adolescents, 108 children) received the 2-dose regimen, and 43 (20 adolescents, 23 children) received 2 placebo doses. Median age was 14.0 (range 11 to 17) and 7.0 (range 4 to 11) years for adolescents and children, respectively. Fifty-four percent of the adolescents and 51% of the children were male. All participants were Africans, and, although there was a slight male preponderance overall, the groups were well balanced. No vaccine-related SAEs were reported; solicited AEs were mostly mild/moderate. Twenty-one days post-MVA-BN-Filo vaccination, binding antibody responses against EBOV GP were observed in 100% of vaccinees (106 adolescents, 104 children). Geometric mean concentrations tended to be higher after the 56-day interval (adolescents 13,532 ELISA units [EU]/mL, children 17,388 EU/mL) than the 28-day interval (adolescents 6,993 EU/mL, children 8,007 EU/mL). Humoral responses persisted at least up to Day 365. A limitation of the study is that the follow-up period was limited to 365 days for the majority of the participants, and so it was not possible to determine whether immune responses persisted beyond this time period. Additionally, formal statistical comparisons were not preplanned but were only performed post hoc. CONCLUSIONS: The heterologous 2-dose vaccination was well tolerated in African adolescents and children with no vaccine-related SAEs. All vaccinees displayed anti-EBOV GP antibodies after the 2-dose regimen, with higher responses in the 56-day interval groups. The frequency of pyrexia after vaccine or placebo was higher in children than in adolescents. These data supported the prophylactic indication against EBOV disease in a paediatric population, as licenced in the EU. TRIAL REGISTRATION: ClinicalTrials.gov NCT02564523.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Inmunidad Humoral , Inmunogenicidad Vacunal , Adolescente , África Oriental , África Occidental , Niño , Preescolar , Femenino , Humanos , Inyecciones Intramusculares , Masculino
3.
J Infect Dis ; 223(7): 1171-1182, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-31821493

RESUMEN

BACKGROUND: Antibody Fc-mediated functions, such as antibody-dependent cellular cytotoxicity, contribute to vaccine-induced protection against viral infections. Fc-mediated function of anti-Ebola glycoprotein (GP) antibodies suggest that Fc-dependent activation of effector cells, including natural killer (NK) cells, could play a role in vaccination against Ebola virus disease. METHODS: We analyzed the effect on primary human NK cell activation of anti-Ebola GP antibody in the serum of United Kingdom-based volunteers vaccinated with the novel 2-dose heterologous adenovirus type 26.ZEBOV, modified vaccinia Ankara-BN-Filo vaccine regimen. RESULTS: We demonstrate primary human NK cell CD107a and interferon γ expression, combined with down-regulation of CD16, in response to recombinant Ebola virus GP and post-vaccine dose 1 and dose 2 serum samples. These responses varied significantly with vaccine regimen, and NK cell activation was found to correlate with anti-GP antibody concentration. We also reveal an impact of NK cell differentiation phenotype on antibody-dependent NK cell activation, with highly differentiated CD56dimCD57+ NK cells being the most responsive. CONCLUSIONS: These findings highlight the dual importance of vaccine-induced antibody concentration and NK cell differentiation status in promoting Fc-mediated activation of NK cells after vaccination, raising a potential role for antibody-mediated NK cell activation in vaccine-induced immune responses.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola , Células Asesinas Naturales/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Vacunación , Proteínas Virales/inmunología
4.
PLoS Med ; 18(10): e1003813, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714820

RESUMEN

BACKGROUND: We investigated safety, tolerability, and immunogenicity of the heterologous 2-dose Ebola vaccination regimen in healthy and HIV-infected adults with different intervals between Ebola vaccinations. METHODS AND FINDINGS: In this randomised, observer-blind, placebo-controlled Phase II trial, 668 healthy 18- to 70-year-olds and 142 HIV-infected 18- to 50-year-olds were enrolled from 1 site in Kenya and 2 sites each in Burkina Faso, Cote d'Ivoire, and Uganda. Participants received intramuscular Ad26.ZEBOV followed by MVA-BN-Filo at 28-, 56-, or 84-day intervals, or saline. Females represented 31.4% of the healthy adult cohort in contrast to 69.7% of the HIV-infected cohort. A subset of healthy adults received booster vaccination with Ad26.ZEBOV or saline at Day 365. Following vaccinations, adverse events (AEs) were collected until 42 days post last vaccination and serious AEs (SAEs) were recorded from signing of the ICF until the end of the study. The primary endpoint was safety, and the secondary endpoint was immunogenicity. Anti-Ebola virus glycoprotein (EBOV GP) binding and neutralising antibodies were measured at baseline and at predefined time points throughout the study. The first participant was enrolled on 9 November 2015, and the date of last participant's last visit was 12 February 2019. No vaccine-related SAEs and mainly mild-to-moderate AEs were observed among the participants. The most frequent solicited AEs were injection-site pain (local), and fatigue, headache, and myalgia (systemic), respectively. Twenty-one days post-MVA-BN-Filo vaccination, geometric mean concentrations (GMCs) with 95% confidence intervals (CIs) of EBOV GP binding antibodies in healthy adults in 28-, 56-, and 84-day interval groups were 3,085 EU/mL (2,648 to 3,594), 7,518 EU/mL (6,468 to 8,740), and 7,300 EU/mL (5,116 to 10,417), respectively. In HIV-infected adults in 28- and 56-day interval groups, GMCs were 4,207 EU/mL (3,233 to 5,474) and 5,283 EU/mL (4,094 to 6,817), respectively. Antibody responses were observed until Day 365. Ad26.ZEBOV booster vaccination after 1 year induced an anamnestic response. Study limitations include that some healthy adult participants either did not receive dose 2 or received dose 2 outside of their protocol-defined interval and that the follow-up period was limited to 365 days for most participants. CONCLUSIONS: Ad26.ZEBOV, MVA-BN-Filo vaccination was well tolerated and immunogenic in healthy and HIV-infected African adults. Increasing the interval between vaccinations from 28 to 56 days improved the magnitude of humoral immune responses. Antibody levels persisted to at least 1 year, and Ad26.ZEBOV booster vaccination demonstrated the presence of vaccination-induced immune memory. These data supported the approval by the European Union for prophylaxis against EBOV disease in adults and children ≥1 year of age. TRIAL REGISTRATION: ClinicalTrials.gov NCT02564523.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Vacunación/efectos adversos , Adulto , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Relación Dosis-Respuesta Inmunológica , Femenino , Vectores Genéticos/inmunología , Glicoproteínas/inmunología , Humanos , Inmunidad Celular/inmunología , Masculino , Placebos , Proteínas Virales/inmunología
5.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243126

RESUMEN

The Ebola vaccine based on Ad26.ZEBOV/MVA-BN-Filo prime-boost regimens is being evaluated in multiple clinical trials. The long-term immune response to the vaccine is unknown, including factors associated with the response and variability around the response. We analyzed data from three phase 1 trials performed by the EBOVAC1 Consortium in four countries: the United Kingdom, Kenya, Tanzania, and Uganda. Participants were randomized into four groups based on the interval between prime and boost immunizations (28 or 56 days) and the sequence in which Ad26.ZEBOV and MVA-BN-Filo were administered. Consecutive enzyme-linked immunosorbent assay (ELISA) measurements of the IgG binding antibody concentrations against the Kikwit glycoprotein (GP) were available for 177 participants to assess the humoral immune response up to 1 year postprime. Using a mathematical model for the dynamics of the humoral response, from 7 days after the boost immunization up to 1 year after the prime immunization, we estimated the durability of the antibody response and the influence of different factors on the dynamics of the humoral response. Ordinary differential equations (ODEs) described the dynamics of antibody response and two populations of antibody-secreting cells (ASCs), short-lived (SL) and long-lived (LL). Parameters of the ODEs were estimated using a population approach. We estimated that half of the LL ASCs could persist for at least 5 years. The vaccine regimen significantly affected the SL ASCs and the antibody peak but not the long-term response. The LL ASC compartment dynamics differed significantly by geographic regions analyzed, with a higher long-term antibody persistence in European subjects. These differences could not be explained by the observed differences in cellular immune response.IMPORTANCE With no available licensed vaccines or therapies, the West African Ebola virus disease epidemic of 2014 to 2016 caused 11,310 deaths. Following this outbreak, the development of vaccines has been accelerated. Combining different vector-based vaccines as heterologous regimens could induce a durable immune response, assessed through antibody concentrations. Based on data from phase 1 trials in East Africa and Europe, the dynamics of the humoral immune response from 7 days after the boost immunization onwards were modeled to estimate the durability of the response and understand its variability. Antibody production is maintained by a population of long-lived cells. Estimation suggests that half of these cells can persist for at least 5 years in humans. Differences in prime-boost vaccine regimens affect only the short-term immune response. Geographical differences in long-lived cell dynamics were inferred, with higher long-term antibody concentrations induced in European participants.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Inmunidad Humoral/efectos de los fármacos , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Ensayos Clínicos Fase I como Asunto/métodos , Vacunas contra el Virus del Ébola/farmacología , Ebolavirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunización Secundaria/métodos , Kenia , Masculino , Modelos Teóricos , Tanzanía , Uganda , Reino Unido , Vacunación
6.
J Theor Biol ; 495: 110254, 2020 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-32205143

RESUMEN

The 2014-2016 Ebola outbreak in West Africa has triggered accelerated development of several preventive vaccines against Ebola virus. Under the EBOVAC1 consortium, three phase I studies were carried out to assess safety and immunogenicity of a two-dose heterologous vaccination regimen developed by Janssen Vaccines and Prevention in collaboration with Bavarian Nordic. To describe the immune response induced by the two-dose heterologous vaccine regimen, we propose a mechanistic ODE based model, which takes into account the role of immunological memory. We perform identifiability and sensitivity analysis of the proposed model to establish which kind of biological data are ideally needed in order to accurately estimate parameters, and additionally, which of those are non-identifiable based on the available data. Antibody concentrations data from phase I studies have been used to calibrate the model and show its ability in reproducing the observed antibody dynamics. Together with other factors, the establishment of an effective and reactive immunological memory is of pivotal importance for several prophylactic vaccines. We show that introducing a memory compartment in our calibrated model allows to evaluate the magnitude of the immune response induced by a booster dose and its long-term persistence afterwards.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Inmunidad , Modelos Biológicos , África Occidental , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Inmunidad/inmunología , Vacunación
7.
J Infect Dis ; 220(1): 57-67, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30796816

RESUMEN

BACKGROUND: During the 2014 West African Ebola outbreak, Ebola vaccine development was accelerated. The phase 1 VAC52150EBL1003 study was performed to investigate 2-dose heterologous vaccination with Ad26.ZEBOV and MVA-BN-Filo in an African population located in a high-altitude setting in Nairobi, Kenya. METHODS: Healthy adult volunteers were randomized to receive one of four 2-dose vaccination schedules. The first vaccination was administered at baseline (Ad26.ZEBOV or MVA-BN-Filo), followed by the second vaccination with the alternate vaccine after either 28 or 56 days. Each schedule had a placebo comparator group. The primary objective was to assess the safety and tolerability of these regimens. RESULTS: Seventy-two volunteers were randomized into 4 groups of 18 (15 received vaccine, and 3 received placebo). The most frequent solicited systemic adverse event was headache (frequency, 50%, 61%, and 42% per dose for MVA-BN-Filo, Ad26.ZEBOV, and placebo, respectively). The most frequent solicited local AE was injection site pain (frequency, 78%, 63%, and 33% per dose for MVA-BN-Filo, Ad26.ZEBOV, and placebo, respectively). No differences in adverse events were observed among the different vaccine regimens. High levels of binding and neutralizing anti-Ebola virus glycoprotein antibodies were induced by all regimens and sustained to day 360 after the first dose. CONCLUSIONS: Two-dose heterologous vaccination with Ad26.ZEBOV and MVA-BN-Filo was well tolerated and highly immunogenic against Ebola virus glycoprotein. CLINICAL TRIALS REGISTRATION: NCT02376426.


Asunto(s)
Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Vacunas Virales/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/inmunología , Brotes de Enfermedades/prevención & control , Femenino , Voluntarios Sanos , Fiebre Hemorrágica Ebola/virología , Humanos , Kenia , Masculino , Persona de Mediana Edad , Vacunación/efectos adversos , Vacunas de ADN , Adulto Joven
8.
J Infect Dis ; 220(1): 46-56, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30796818

RESUMEN

BACKGROUND: Ebola vaccine development was accelerated in response to the 2014 Ebola virus infection outbreak. This phase 1 study (VAC52150EBL1004) assessed safety, tolerability, and immunogenicity of heterologous 2-dose Ad26.ZEBOV, MVA-BN-Filo vaccination regimens in the Lake Victoria Basin of Tanzania and Uganda in mid-level altitude, malaria-endemic settings. METHODS: Healthy volunteers aged 18-50 years from Tanzania (n = 25) and Uganda (n = 47) were randomized to receive placebo or active vaccination with Ad26.ZEBOV or MVA-BN-Filo (first vaccination), followed by MVA-BN-Filo or Ad26.ZEBOV (second vaccination) dose 2, respectively, with intervals of 28 or 56 days. RESULTS: Seventy-two adults were randomized to receive vaccine (n = 60) or placebo (n = 12). No vaccine-related serious adverse events were reported. The most frequent solicited local and systemic adverse events were injection site pain (frequency, 70%, 66%, and 42% per dose for MVA-BN-Filo, Ad26.ZEBOV, and placebo, respectively) and headache (57%, 56%, and 46%, respectively). Adverse event patterns were similar among regimens. Twenty-one days after dose 2, 100% of volunteers demonstrated binding antibody responses against Ebola virus glycoprotein, and 87%-100% demonstrated neutralizing antibody responses. Ad26.ZEBOV dose 1 vaccination induced more-robust initial binding antibody and cellular responses than MVA-BN-Filo dose 1 vaccination. CONCLUSIONS: Heterologous 2-dose vaccination with Ad26.ZEBOV and MVA-BN-Filo against Ebola virus is well tolerated and immunogenic in healthy volunteers. CLINICAL TRIALS REGISTRATION: NCT02376400.


Asunto(s)
Formación de Anticuerpos/inmunología , Vacunas contra el Virus del Ébola/efectos adversos , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Vacunas Virales/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Brotes de Enfermedades/prevención & control , Femenino , Voluntarios Sanos , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Persona de Mediana Edad , Tanzanía , Uganda , Vacunación/efectos adversos , Vacunas de ADN , Vacunas Virales/efectos adversos , Adulto Joven
9.
PLoS Pathog ; 12(7): e1005733, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27403737

RESUMEN

After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Bazo/inmunología , Tripanosomiasis Africana/inmunología , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trypanosoma brucei brucei/inmunología
10.
PLoS Pathog ; 12(3): e1005483, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27032093

RESUMEN

The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive PER.C6 cell culture platform, the stably attenuated CAVA strains may serve as an attractive low-cost and (bio)safe option for the production of a novel next generation IPV.


Asunto(s)
Poliomielitis/inmunología , Vacuna Antipolio de Virus Inactivados/inmunología , Poliovirus/inmunología , Animales , Frío , Calor , Ratones Transgénicos , Mutación/genética , Fenotipo , Poliovirus/genética , Vacuna Antipolio Oral/inmunología , ARN Viral/inmunología , Ratas , Vacunación/métodos
11.
PLoS Negl Trop Dis ; 18(4): e0011500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603720

RESUMEN

BACKGROUND: The exposure to parasites may influence the immune response to vaccines in endemic African countries. In this study, we aimed to assess the association between helminth exposure to the most prevalent parasitic infections, schistosomiasis, soil transmitted helminths infection and filariasis, and the Ebola virus glycoprotein (EBOV GP) antibody concentration in response to vaccination with the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen in African and European participants using samples obtained from three international clinical trials. METHODS/PRINCIPAL FINDINGS: We conducted a study in a subset of participants in the EBL2001, EBL2002 and EBL3001 clinical trials that evaluated the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen against EVD in children, adolescents and adults from the United Kingdom, France, Burkina Faso, Cote d'Ivoire, Kenya, Uganda and Sierra Leone. Immune markers of helminth exposure at baseline were evaluated by ELISA with three commercial kits which detect IgG antibodies against schistosome, filarial and Strongyloides antigens. Luminex technology was used to measure inflammatory and activation markers, and Th1/Th2/Th17 cytokines at baseline. The association between binding IgG antibodies specific to EBOV GP (measured on day 21 post-dose 2 and on Day 365 after the first dose respectively), and helminth exposure at baseline was evaluated using a multivariable linear regression model adjusted for age and study group. Seventy-eight (21.3%) of the 367 participants included in the study had at least one helminth positive ELISA test at baseline, with differences of prevalence between studies and an increased prevalence with age. The most frequently detected antibodies were those to Schistosoma mansoni (10.9%), followed by Acanthocheilonema viteae (9%) and then Strongyloides ratti (7.9%). Among the 41 immunological analytes tested, five were significantly (p < .003) lower in participants with at least one positive helminth ELISA test result: CCL2/MCP1, FGFbasic, IL-7, IL-13 and CCL11/Eotaxin compared to participants with negative helminth ELISA tests. No significant association was found with EBOV-GP specific antibody concentration at 21 days post-dose 2, or at 365 days post-dose 1, adjusted for age group, study, and the presence of any helminth antibodies at baseline. CONCLUSIONS/SIGNIFICANCE: No clear association was found between immune markers of helminth exposure as measured by ELISA and post-vaccination response to the Ebola Ad26.ZEBOV/ MVA-BN-Filo vaccine regimen. TRIAL REGISTRATION: NCT02416453, NCT02564523, NCT02509494. ClinicalTrials.gov.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , África , Anticuerpos Antihelmínticos/sangre , Anticuerpos Antivirales/sangre , Citocinas/inmunología , Vacunas contra el Virus del Ébola/inmunología , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/inmunología , Ebolavirus/genética , Ensayo de Inmunoadsorción Enzimática , Helmintiasis/inmunología , Helmintiasis/prevención & control , Helmintos/inmunología , Helmintos/genética , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/inmunología , Inmunoglobulina G/sangre , Anciano
12.
Vaccines (Basel) ; 12(5)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38793748

RESUMEN

The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo, administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events (AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses). Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years, and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were 6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings support continued evaluation of accelerated vaccine schedules for rapid deployment in populations at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015).

13.
PLoS Pathog ; 7(6): e1002089, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738467

RESUMEN

African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves.


Asunto(s)
Apoptosis , Linfopoyesis/inmunología , Células Precursoras de Linfocitos B/inmunología , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Formación de Anticuerpos/inmunología , Variación Antigénica/inmunología , Médula Ósea/inmunología , Células Cultivadas , Memoria Inmunológica/inmunología , Ratones , Ratones Endogámicos C57BL , Células Precursoras de Linfocitos B/citología , Bazo/citología , Bazo/inmunología , Trypanosoma brucei brucei/metabolismo
14.
NPJ Vaccines ; 8(1): 174, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940656

RESUMEN

The persistence of the long-term immune response induced by the heterologous Ad26.ZEBOV, MVA-BN-Filo two-dose vaccination regimen against Ebola has been investigated in several clinical trials. Longitudinal data on IgG-binding antibody concentrations were analyzed from 487 participants enrolled in six Phase I and Phase II clinical trials conducted by the EBOVAC1 and EBOVAC2 consortia. A model based on ordinary differential equations describing the dynamics of antibodies and short- and long-lived antibody-secreting cells (ASCs) was used to model the humoral response from 7 days after the second vaccination to a follow-up period of 2 years. Using a population-based approach, we first assessed the robustness of the model, which was originally estimated based on Phase I data, against all data. Then we assessed the longevity of the humoral response and identified factors that influence these dynamics. We estimated a half-life of the long-lived ASC of at least 15 years and found an influence of geographic region, sex, and age on the humoral response dynamics, with longer antibody persistence in Europeans and women and higher production of antibodies in younger participants.

15.
Vaccines (Basel) ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35746491

RESUMEN

Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57- and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals.

16.
PLoS One ; 17(10): e0274906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36197845

RESUMEN

BACKGROUND: Though clinically similar, Ebola virus disease and Marburg virus disease are caused by different viruses. Of the 30 documented outbreaks of these diseases in sub-Saharan Africa, eight were major outbreaks (≥200 cases; five caused by Zaire ebolavirus [EBOV], two by Sudan ebolavirus [SUDV], and one by Marburg virus [MARV]). Our purpose is to develop a multivalent vaccine regimen protecting against each of these filoviruses. This first-in-human study assessed the safety and immunogenicity of several multivalent two-dose vaccine regimens that contain Ad26.Filo and MVA-BN-Filo. METHODS: Ad26.Filo combines three vaccines encoding the glycoprotein (GP) of EBOV, SUDV, and MARV. MVA-BN-Filo is a multivalent vector encoding EBOV, SUDV, and MARV GPs, and Taï Forest nucleoprotein. This Phase 1, randomized, double-blind, placebo-controlled study enrolled healthy adults (18-50 years) into four groups, randomized 5:1 (active:placebo), to assess different Ad26.Filo and MVA-BN-Filo vaccine directionality and administration intervals. The primary endpoint was safety; immune responses against EBOV, SUDV, and MARV GPs were also assessed. RESULTS: Seventy-two participants were randomized, and 60 (83.3%) completed the study. All regimens were well tolerated with no deaths or vaccine-related serious adverse events (AEs). The most frequently reported solicited local AE was injection site pain/tenderness. Solicited systemic AEs most frequently reported were headache, fatigue, chills, and myalgia; most solicited AEs were Grade 1-2. Solicited/unsolicited AE profiles were similar between regimens. Twenty-one days post-dose 2, 100% of participants on active regimen responded to vaccination and exhibited binding antibodies against EBOV, SUDV, and MARV GPs; neutralizing antibody responses were robust against EBOV (85.7-100%), but lower against SUDV (35.7-100%) and MARV (0-57.1%) GPs. An Ad26.Filo booster induced a rapid further increase in humoral responses. CONCLUSION: This study demonstrates that heterologous two-dose vaccine regimens with Ad26.Filo and MVA-BN-Filo are well tolerated and immunogenic in healthy adults. CLINICALTRIALS.GOV: NCT02860650.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Marburgvirus , Adolescente , Adulto , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas , Humanos , Persona de Mediana Edad , Nucleoproteínas , Vacunas Combinadas , Virus Vaccinia , Adulto Joven
17.
NPJ Vaccines ; 7(1): 156, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450746

RESUMEN

Without clinical efficacy data, vaccine protective effect may be extrapolated from animals to humans using an immunologic marker that correlates with protection in animals. This immunobridging approach was used for the two-dose Ebola vaccine regimen Ad26.ZEBOV, MVA-BN-Filo. Ebola virus (EBOV) glycoprotein binding antibody data obtained from 764 vaccinated healthy adults in five clinical studies (NCT02416453, NCT02564523, NCT02509494, NCT02543567, NCT02543268) were used to calculate mean predicted survival probability (with preplanned 95% confidence interval [CI]). We used a logistic regression model based on EBOV glycoprotein binding antibody responses in vaccinated non-human primates (NHPs) and NHP survival after EBOV challenge. While the protective effect of the vaccine regimen in humans can be inferred in this fashion, the extrapolated survival probability cannot be directly translated into vaccine efficacy. The primary immunobridging analysis evaluated the lower limit of the CI against predefined success criterion of 20% and passed with mean predicted survival probability of 53.4% (95% CI: 36.7-67.4).

18.
Lancet Infect Dis ; 22(1): 110-122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529962

RESUMEN

BACKGROUND: Children account for a substantial proportion of cases and deaths from Ebola virus disease. We aimed to assess the safety and immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from the Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in a paediatric population in Sierra Leone. METHODS: This randomised, double-blind, controlled trial was done at three clinics in Kambia district, Sierra Leone. Healthy children and adolescents aged 1-17 years were enrolled in three age cohorts (12-17 years, 4-11 years, and 1-3 years) and randomly assigned (3:1), via computer-generated block randomisation (block size of eight), to receive an intramuscular injection of either Ad26.ZEBOV (5 × 1010 viral particles; first dose) followed by MVA-BN-Filo (1 × 108 infectious units; second dose) on day 57 (Ebola vaccine group), or a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo (second dose) on day 57 (control group). Study team personnel (except for those with primary responsibility for study vaccine preparation), participants, and their parents or guardians were masked to study vaccine allocation. The primary outcome was safety, measured as the occurrence of solicited local and systemic adverse symptoms during 7 days after each vaccination, unsolicited systemic adverse events during 28 days after each vaccination, abnormal laboratory results during the study period, and serious adverse events or immediate reportable events throughout the study period. The secondary outcome was immunogenicity (humoral immune response), measured as the concentration of Ebola virus glycoprotein-specific binding antibodies at 21 days after the second dose. The primary outcome was assessed in all participants who had received at least one dose of study vaccine and had available reactogenicity data, and immunogenicity was assessed in all participants who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: From April 4, 2017, to July 5, 2018, 576 eligible children or adolescents (192 in each of the three age cohorts) were enrolled and randomly assigned. The most common solicited local adverse event during the 7 days after the first and second dose was injection-site pain in all age groups, with frequencies ranging from 0% (none of 48) of children aged 1-3 years after placebo injection to 21% (30 of 144) of children aged 4-11 years after Ad26.ZEBOV vaccination. The most frequently observed solicited systemic adverse event during the 7 days was headache in the 12-17 years and 4-11 years age cohorts after the first and second dose, and pyrexia in the 1-3 years age cohort after the first and second dose. The most frequent unsolicited adverse event after the first and second dose vaccinations was malaria in all age cohorts, irrespective of the vaccine types. Following vaccination with MenACWY, severe thrombocytopaenia was observed in one participant aged 3 years. No other clinically significant laboratory abnormalities were observed in other study participants, and no serious adverse events related to the Ebola vaccine regimen were reported. There were no treatment-related deaths. Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second dose of the Ebola virus vaccine regimen were observed in 131 (98%) of 134 children aged 12-17 years (9929 ELISA units [EU]/mL [95% CI 8172-12 064]), in 119 (99%) of 120 aged 4-11 years (10 212 EU/mL [8419-12 388]), and in 118 (98%) of 121 aged 1-3 years (22 568 EU/mL [18 426-27 642]). INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen was well tolerated with no safety concerns in children aged 1-17 years, and induced robust humoral immune responses, suggesting suitability of this regimen for Ebola virus disease prophylaxis in children. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Inmunogenicidad Vacunal , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación , Adolescente , Niño , Preescolar , Esquema de Medicación , Femenino , Humanos , Lactante , Inyecciones Intramusculares , Masculino , Sierra Leona , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
19.
Lancet Infect Dis ; 22(1): 97-109, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34529963

RESUMEN

BACKGROUND: The Ebola epidemics in west Africa and the Democratic Republic of the Congo highlight an urgent need for safe and effective vaccines to prevent Ebola virus disease. We aimed to assess the safety and long-term immunogenicity of a two-dose heterologous vaccine regimen, comprising the adenovirus type 26 vector-based vaccine encoding the Ebola virus glycoprotein (Ad26.ZEBOV) and the modified vaccinia Ankara vector-based vaccine, encoding glycoproteins from Ebola virus, Sudan virus, and Marburg virus, and the nucleoprotein from the Tai Forest virus (MVA-BN-Filo), in Sierra Leone, a country previously affected by Ebola. METHODS: The trial comprised two stages: an open-label, non-randomised stage 1, and a randomised, double-blind, controlled stage 2. The study was done at three clinics in Kambia district, Sierra Leone. In stage 1, healthy adults (aged ≥18 years) residing in or near Kambia district, received an intramuscular injection of Ad26.ZEBOV (5 × 1010 viral particles) on day 1 (first dose) followed by an intramuscular injection of MVA-BN-Filo (1 × 108 infectious units) on day 57 (second dose). An Ad26.ZEBOV booster vaccination was offered at 2 years after the first dose to stage 1 participants. The eligibility criteria for adult participants in stage 2 were consistent with stage 1 eligibility criteria. Stage 2 participants were randomly assigned (3:1), by computer-generated block randomisation (block size of eight) via an interactive web-response system, to receive either the Ebola vaccine regimen (Ad26.ZEBOV followed by MVA-BN-Filo) or an intramuscular injection of a single dose of meningococcal quadrivalent (serogroups A, C, W135, and Y) conjugate vaccine (MenACWY; first dose) followed by placebo on day 57 (second dose; control group). Study team personnel, except those with primary responsibility for study vaccine preparation, and participants were masked to study vaccine allocation. The primary outcome was the safety of the Ad26.ZEBOV and MVA-BN-Filo vaccine regimen, which was assessed in all participants who had received at least one dose of study vaccine. Safety was assessed as solicited local and systemic adverse events occurring in the first 7 days after each vaccination, unsolicited adverse events occurring in the first 28 days after each vaccination, and serious adverse events or immediate reportable events occurring up to each participant's last study visit. Secondary outcomes were to assess Ebola virus glycoprotein-specific binding antibody responses at 21 days after the second vaccine in a per-protocol set of participants (ie, those who had received both vaccinations within the protocol-defined time window, had at least one evaluable post-vaccination sample, and had no major protocol deviations that could have influenced the immune response) and to assess the safety and tolerability of the Ad26.ZEBOV booster vaccination in stage 1 participants who had received the booster dose. This study is registered at ClinicalTrials.gov, NCT02509494. FINDINGS: Between Sept 30, 2015, and Oct 19, 2016, 443 participants (43 in stage 1 and 400 in stage 2) were enrolled; 341 participants assigned to receive the Ad26.ZEBOV and MVA-BN-Filo regimen and 102 participants assigned to receive the MenACWY and placebo regimen received at least one dose of study vaccine. Both regimens were well tolerated with no safety concerns. In stage 1, solicited local adverse events (mostly mild or moderate injection-site pain) were reported in 12 (28%) of 43 participants after Ad26.ZEBOV vaccination and in six (14%) participants after MVA-BN-Filo vaccination. In stage 2, solicited local adverse events were reported in 51 (17%) of 298 participants after Ad26.ZEBOV vaccination, in 58 (24%) of 246 after MVA-BN-Filo vaccination, in 17 (17%) of 102 after MenACWY vaccination, and in eight (9%) of 86 after placebo injection. In stage 1, solicited systemic adverse events were reported in 18 (42%) of 43 participants after Ad26.ZEBOV vaccination and in 17 (40%) after MVA-BN-Filo vaccination. In stage 2, solicited systemic adverse events were reported in 161 (54%) of 298 participants after Ad26.ZEBOV vaccination, in 107 (43%) of 246 after MVA-BN-Filo vaccination, in 51 (50%) of 102 after MenACWY vaccination, and in 39 (45%) of 86 after placebo injection. Solicited systemic adverse events in both stage 1 and 2 participants included mostly mild or moderate headache, myalgia, fatigue, and arthralgia. The most frequent unsolicited adverse event after the first dose was headache in stage 1 and malaria in stage 2. Malaria was the most frequent unsolicited adverse event after the second dose in both stage 1 and 2. No serious adverse event was considered related to the study vaccine, and no immediate reportable events were observed. In stage 1, the safety profile after the booster vaccination was not notably different to that observed after the first dose. Vaccine-induced humoral immune responses were observed in 41 (98%) of 42 stage 1 participants (geometric mean binding antibody concentration 4784 ELISA units [EU]/mL [95% CI 3736-6125]) and in 176 (98%) of 179 stage 2 participants (3810 EU/mL [3312-4383]) at 21 days after the second vaccination. INTERPRETATION: The Ad26.ZEBOV and MVA-BN-Filo vaccine regimen was well tolerated and immunogenic, with persistent humoral immune responses. These data support the use of this vaccine regimen for Ebola virus disease prophylaxis in adults. FUNDING: Innovative Medicines Initiative 2 Joint Undertaking and Janssen Vaccines & Prevention BV.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Inmunogenicidad Vacunal , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación , Adulto , Anticuerpos Antivirales/inmunología , República Democrática del Congo , Método Doble Ciego , Vacunas contra el Virus del Ébola/administración & dosificación , Ebolavirus/genética , Femenino , Humanos , Inmunidad Humoral , Masculino , Sierra Leona , Vacunación/métodos , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
20.
NPJ Vaccines ; 6(1): 157, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930928

RESUMEN

Two phase 3 clinical studies were conducted in the USA to bridge across different Ad26.ZEBOV manufacturing processes and sites, and to evaluate the immunogenicity of different dose levels of Ad26.ZEBOV and MVA-BN-Filo. Study 1 evaluated the immunological equivalence of three batches of Ad26.ZEBOV administered as dose 1, followed by one batch of MVA-BN-Filo as dose 2. In Study 2, immunogenic non-inferiority of intermediate (Ad26.ZEBOV: 2 × 1010 viral particles [vp], MVA-BN-Filo: 5 × 107 infectious units [Inf.U]) and low (8 × 109 vp, 5 × 107 Inf.U) doses of Ad26.ZEBOV and MVA-BN-Filo were evaluated against the full clinical dose (5 × 1010 vp, 1 × 108 Inf.U). In Study 1, equivalence was demonstrated for two of three batch comparisons post-dose 1 and all three batches after the full regimen. Study 2 demonstrated a dose-dependent response; however, non-inferiority against the full clinical dose was not met. All regimens were well tolerated and immune responses were observed in all participants, regardless of manufacturing process or dose. Consistency of immunogenicity of different Ad26.ZEBOV batches was demonstrated and a dose-dependent response was observed after Ad26.ZEBOV, MVA-BN-Filo vaccination. ClinicalTrials.gov identifiers: NCT02543268; NCT02543567.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA