Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Nucl Med Mol Imaging ; 51(1): 206-217, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37642702

RESUMEN

PURPOSE: Tumor resection represents the first-line treatment for symptomatic meningiomas, and the extent of resection has been shown to be of prognostic importance. Assessment of tumor remnants with somatostatin receptor PET proves to be superior to intraoperative estimation with Simpson grading or MRI. In this preliminary study, we evaluate the prognostic relevance of postoperative PET for progression-free survival in meningiomas. METHODS: We conducted a post hoc analysis on a prospective patient cohort with resected meningioma WHO grade 1. Patients received postoperative MRI and [68Ga]Ga-DOTA-TATE PET/CT and were followed regularly with MRI surveillance scans for detection of tumor recurrence/progression. RESULTS: We included 46 patients with 49 tumors. The mean age at diagnosis was 57.8 ± 1.7 years with a male-to-female ratio of 1:1.7. Local tumor progression occurred in 7/49 patients (14%) after a median follow-up of 52 months. Positive PET was associated with an increased risk for progression (*p = 0.015) and a lower progression-free survival (*p = 0.029), whereas MRI was not. 20 out of 20 patients (100%) with negative PET findings remained recurrence-free. The location of recurrence/progression on MRI was adjacent to regions where postoperative PET indicated tumor remnants in all cases. Gross tumor volumes were higher on PET compared to MRI (*p = 0.032). CONCLUSION: Our data show that [68Ga]Ga-DOTA-TATE PET/CT is highly sensitive in revealing tumor remnants in patients with meningioma WHO grade 1. Negative PET findings were associated with a higher progression-free survival, thus improving surveillance. In patients with tumor remnants, additional PET can optimize adjuvant radiotherapy target planning of surgically resected meningiomas.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Compuestos Organometálicos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Pronóstico , Radioisótopos de Galio , Supervivencia sin Progresión , Estudios Prospectivos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Organización Mundial de la Salud , Estudios Retrospectivos
2.
Strahlenther Onkol ; 197(7): 601-613, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884441

RESUMEN

BACKGROUND: Single-isocenter dynamic conformal arc (SIDCA) therapy is a technically efficient way of delivering stereotactic radiosurgery (SRS) to multiple metastases simultaneously. This study reports on the safety and feasibility of linear accelerator (LINAC) based SRS with SIDCA for patients with multiple brain metastases. METHODS: All patients who received SRS with this technique between November 2017 and June 2019 within a prospective registry trial were included. The patients were irradiated with a dedicated planning tool for multiple brain metastases using a LINAC with a 5 mm multileaf collimator. Follow-up was performed every 3 months, including clinical and radiological examination with cranial magnetic resonance imaging (MRI). These early data were analyzed using descriptive statistics and the Kaplan-Meier method. RESULTS: A total of 65 patients with 254 lesions (range 2-12) were included in this analysis. Median beam-on time was 23 min. The median follow-up at the time of analysis was 13 months (95% CI 11.1-14.9). Median overall survival and median intracranial progression-free survival was 15 months (95% CI 7.7-22.3) and 7 months (95% CI 3.9-10.0), respectively. Intracranial and local control after 1 year was 64.6 and 97.5%, respectively. During follow-up, CTCAE grade I adverse effects (AE) were experienced by 29 patients (44.6%; 18 of them therapy related, 27.7%), CTCAE grade II AEs by four patients (6.2%; one of them therapy related, 1.5%), and CTCAE grade III by three patients (4.6%; none of them therapy related). Two lesions (0.8%) in two patients (3.1%) were histopathologically proven to be radiation necrosis. CONCLUSION: Simultaneous SRS using SIDCA seems to be a feasible and safe treatment for patients with multiple brain metastases.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Estudios Prospectivos , Radiocirugia/métodos , Radioterapia Conformacional/métodos , Resultado del Tratamiento , Adulto Joven
3.
BMC Musculoskelet Disord ; 21(1): 248, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32299400

RESUMEN

BACKGROUND: In recent years, structured reporting has been shown to be beneficial with regard to report completeness and clinical decision-making as compared to free-text reports (FTR). However, the impact of structured reporting on reporting efficiency has not been thoroughly evaluted yet. The aim of this study was to compare reporting times and report quality of structured reports (SR) to conventional free-text reports of dual-energy x-ray absorptiometry exams (DXA). METHODS: FTRs and SRs of DXA were retrospectively generated by 2 radiology residents and 2 final-year medical students. Time was measured from the first view of the exam until the report was saved. A random sample of DXA reports was selected and sent to 2 referring physicians for further evaluation of report quality. RESULTS: A total of 104 DXA reports (both FTRs and SRs) were generated and 48 randomly selected reports were evaluated by referring physicians. Reporting times were shorter for SRs in both radiology residents and medical students with median reporting times of 2.7 min (residents: 2.7, medical students: 2.7) for SRs and 6.1 min (residents: 5.0, medical students: 7.5) for FTRs. Information extraction was perceived to be significantly easier from SRs vs FTRs (P <  0.001). SRs were rated to answer the clinical question significantly better than FTRs (P <  0.007). Overall report quality was rated significantly higher for SRs compared to FTRs (P <  0.001) with 96% of SRs vs 79% of FTRs receiving high or very high-quality ratings. All readers except for one resident preferred structured reporting over free-text reporting and both referring clinicians preferred SRs over FTRs for DXA. CONCLUSIONS: Template-based structured reporting of DXA might lead to shorter reporting times and increased report quality.


Asunto(s)
Absorciometría de Fotón/métodos , Registros Médicos , Osteoporosis/diagnóstico por imagen , Proyectos de Investigación , Informe de Investigación , Adulto , Anciano , Anciano de 80 o más Años , Toma de Decisiones Clínicas , Femenino , Humanos , Almacenamiento y Recuperación de la Información , Masculino , Persona de Mediana Edad , Radiólogos , Estudios Retrospectivos , Programas Informáticos , Estudiantes de Medicina , Encuestas y Cuestionarios
4.
Int J Clin Oncol ; 21(4): 642-650, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26694815

RESUMEN

BACKGROUND: Neurocognition is a very important aspect of a brain tumor patient's quality of life following radiotherapy. The aim of the present study was to assess neurocognitive functions of patients diagnosed with high-grade gliomas undergoing radiotherapy by using the NeuroCogFx(®) test and to examine relevant dose/volume parameters as well as patient characteristics potentially influencing the neurological baseline status and subsequent outcome. METHODS: The cohort consisted of 44 astrocytoma World Health Organization grade III/IV patients. The NeuroCogFx(®) test was carried out on patients during (N = 44) and after (N = 21) irradiation. The test examines verbal/figural/short-term/working memory, psychomotorical speed, selective attention and verbal speed. The results were compared with regular patient and treatment data with an emphasis on the dose applied to the hippocampus. RESULTS: Overall there were only slight changes in the median test results when comparing the baseline to the follow-up tests. In the 'verbal memory test' lower percentile ranks were achieved in left-sided tumors compared to right-sided tumors (p = 0.034). Dexamethasone intake during radiotherapy was significantly correlated with the difference between the two test batteries. Concerning figural memory, a correlation was detected between decreased figural recognition and the radiation dose to the left hippocampus (p = 0.045). CONCLUSION: We conclude that tumor infiltration of the hippocampus has an impact on neurocognitive function. However, treatment with radiotherapy seems to have less influence on cognitive outcome than expected.


Asunto(s)
Astrocitoma/patología , Astrocitoma/radioterapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Procesos Mentales , Astrocitoma/complicaciones , Atención , Neoplasias Encefálicas/complicaciones , Cognición , Femenino , Hipocampo/patología , Humanos , Masculino , Memoria a Corto Plazo , Procesos Mentales/efectos de la radiación , Clasificación del Tumor , Invasividad Neoplásica , Pruebas Neuropsicológicas , Estudios Prospectivos , Calidad de Vida , Dosificación Radioterapéutica , Tiempo de Reacción
5.
Radiother Oncol ; 199: 110437, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39013502

RESUMEN

PURPOSE: Re-irradiation (reRT) is an effective treatment modality for patients with recurrent glioma. Data on dose escalation, the use of simulated integrated boost and concomitant therapy to reRT are still scarce. In this monocentric cohort of n = 223 patients we investigated the influence of reRT dose escalation as well as the concomitant use of bevacizumab (BEV) with regard to post-recurrence survival (PRS) and risk of radionecrosis (RN). PATIENTS AND METHODS: Patients with recurrent glioma treated between July 2008 and August 2022 with reRT with BEV, reRT with temozolomide (TMZ) and reRT without concomitant systemic therapy were retrospectively analyzed. PRS and RN-free survival (RNFS) were calculated for all patients using the Kaplan-Meier estimator. Univariable and multivariable cox regression was performed for PRS and for RNFS. The reRT Risk Score (RRRS) was calculated for all patients. RESULTS: Good, intermediate and poor risk of the RRRS translated into 11 months, 9 months and 7 months of median PRS (univariable: p = 0.008, multivariable: p = 0.013). ReRT was applied with a dose of ≤36 Gy (n = 140) or >36 Gy (n = 83). Concomitant bevacizumab (BEV) therapy was performed in n = 122 and concomitant temozolomide (TMZ) therapy in n = 32 patients. Median PRS was 10 months in patients treated with >36 Gy and 8 months in patients treated with ≤36 Gy (univariable: p = 0.032, multivariable: p = 0.576). Regarding concomitant TMZ therapy, median PRS was 14 months vs. 9 months for patients treated with or without TMZ (univariable: p = 0.041, multivariable: p = 0.019). No statistically significant influence on PRS was seen for concomitant BEV therapy in this series. RN was less frequent for reRT with concomitant BEV, (17/122; 13.9 %) than for reRT without BEV (30/101; 29.7 %). Regarding RNFS, the hazard ratio for reRT with BEV was 0.436 (univariable; p = 0.006) and 0.479 (multivariable; p = 0.023), respectively. ReRT dose did not show statistical significance in regards to RN (univariable: p = 0.073, multivariable: p = 0.404). RNFS was longer for patients receiving concomitant BEV to reRT than for patients treated with reRT only (mean 31.7 vs. 30.9 months, p = 0.004). CONCLUSION: In this cohort, in patients treated with concomitant BEV therapy RN was less frequently detected and in patients treated with concomitant TMZ longer PRS was observed. Based on these results, the best concomitant therapy and the optimal dose should be decided on a patient-by-patient basis.


Asunto(s)
Bevacizumab , Neoplasias Encefálicas , Glioma , Recurrencia Local de Neoplasia , Reirradiación , Temozolomida , Humanos , Glioma/radioterapia , Glioma/mortalidad , Glioma/patología , Glioma/tratamiento farmacológico , Reirradiación/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Temozolomida/uso terapéutico , Temozolomida/administración & dosificación , Bevacizumab/uso terapéutico , Bevacizumab/administración & dosificación , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidad , Estudios Retrospectivos , Anciano , Adulto , Dosificación Radioterapéutica , Quimioradioterapia/efectos adversos , Quimioradioterapia/métodos , Traumatismos por Radiación/etiología , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/administración & dosificación
7.
Transl Lung Cancer Res ; 13(7): 1635-1648, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39118877

RESUMEN

Background: Stereotactic radiosurgery/radiotherapy (SRS/SRT) and novel systemic treatments, such as tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), have demonstrated to be effective in managing brain metastases in non-small cell lung cancer (NSCLC). However, the optimal treatment sequence of SRS/SRT and TKI/ICI remains uncertain. This retrospective monocentric analysis addresses this question by comparing the outcomes of patients with NSCLC brain metastases who received upfront SRS/SRT versus those who were initially treated with TKI/ICI. Methods: All patients treated with SRS/SRT and TKI/ICI for NSCLC brain metastases were collected from a clinical database. The patients who received first-line TKI or ICI for the treatment of brain metastases were then selected for further analysis. Within this cohort, a comparative analysis between upfront SRS/SRT and patients initially treated with TKI/ICI was conducted, assessing key parameters such as overall survival (OS), intracranial progression-free survival (iPFS) and treatment-related toxicity. Both OS and iPFS were defined as the time from SRS/SRT to either death or disease progression, respectively. Results: The analysis encompassed 54 patients, of which 34 (63.0%) patients received SRS/SRT and TKI/ICI as their first-line therapy. Of the latter, 17 (50.0%) patients received upfront SRS/SRT and 17 (50.0%) were initially treated with TKI/ICI; 24 (70.6%) received SRS/SRT and ICI, and 10 (29.4%) received SRS/SRT and TKI. The cohorts did not significantly differ in the univariable analyses for the following parameters: sex, age, histology, molecular genetics, disease stage at study treatment, performance status, number of brain metastases, treatment technique, tumor volume, target volume, disease progression, radiation necrosis, dosimetry. While no significant differences were found in terms of iPFS and OS between patients treated with upfront SRS/SRT and patients initially treated with TKI, upfront SRS/SRT demonstrated significantly superior OS when compared to patients initially treated with ICI (median OS not reached vs. 17.5 months; mean 37.8 vs. 23.6 months; P=0.03) with no difference in iPFS. No significant differences in treatment-related toxicity were observed among the cohorts. Conclusions: In this retrospective, single-center cohort study, patients treated with upfront SRS/SRT demonstrated significantly longer OS compared to patients initially treated with ICI in the cohort receiving first-line therapy for brain metastases. However, given the retrospective design and the limited cohort size, definitive conclusions cannot be drawn from these findings. Nevertheless, the results suggest that the timing of SRS/SRT may play an important role in treatment outcomes. Further investigation, preferably through prospective randomized trials, is warranted to provide more conclusive answers to this important question.

8.
Cancers (Basel) ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791920

RESUMEN

The standard treatment for locally advanced cervical cancer typically includes concomitant chemoradiation, a regimen known to induce severe hematologic toxicity (HT). Particularly, pelvic bone marrow dose exposure has been identified as a contributing factor to this hematologic toxicity. Chemotherapy further increases bone marrow suppression, often necessitating treatment interruptions or dose reductions. A systematic search for original articles published between 1 January 2006 and 7 January 2024 that reported on chemoradiotherapy for locally advanced cervical cancer and hematologic toxicities was conducted. Twenty-four articles comprising 1539 patients were included in the final analysis. HT of grade 2 and higher was observed across all studies and frequently exceeded 50%. When correlating active pelvic bone marrow and HT, significant correlations were found for volumes between 10 and 45 Gy and HT of grade 3 and higher. Several dose recommendations for pelvic bone and pelvic bone marrow sparing to reduce HT were established, including V10 < 90-95%, V20 < 65-86.6% and V40 < 22.8-40%. Applying dose constraints to the pelvic bone/bone marrow is a promising approach for reducing HT, and thus reliable implementation of therapy. However, prospective randomized controlled trials are needed to define precise dose constraints and optimize clinical strategies.

9.
Clin Transl Radiat Oncol ; 45: 100706, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38116137

RESUMEN

Background and purpose: The PRIDE trial (NOA-28; ARO-2022-12; NCT05871021) is scheduled to start recruitment in October 2023. Its primary objective is to enhance median overall survival (OS), compared to historical median OS rates, in patients with methylguanine methlyltransferase (MGMT) promotor unmethylated glioblastoma by incorporating isotoxic dose escalation to 75 Gy in 30 fractions. To achieve isotoxicity and counteract the elevated risk of radiation necrosis (RN) associated with dose-escalated regimens, the addition of protective concurrent bevacizumab (BEV) serves as an innovative approach. The current study aims to assess the dosimetric feasibility of the proposed concept. Materials and methods: A total of ten patients diagnosed with glioblastoma were included in this dosimetric analysis. Delineation of target volumes for the reference plans adhered to the ESTRO-EANO 2023 guideline. The experimental plans included an additional volume for the integrated boost. Additionally, the 60 Gy-volume was reduced by using a margin of 1.0 cm instead of 1.5 cm. To assess the risk of symptomatic RN, the Normal Tissue Complication Probability (NTCP) was calculated and compared between the reference and experimental plans. Results: Median NTCP of the reference plan (NTCPref) and of the experimental plan (NTCPex) were 0.24 (range 0.11-0.29) and 0.42 (range 0.18-0.54), respectively. NTCPex was a median of 1.77 (range 1.60-1.99) times as high as the NTXPref. In a logarithmic comparison, the risk of RN is enhanced by a factor of median 2.00 (range 1.66-2.35). The defined constraints for the organs at risk were feasible. Conclusion: When considering the potential protective effect of BEV, which we hypothesized might reduce the risk of RN by approximately two-fold, achieving isotoxicity with the proposed dose-escalated experimental plan for the PRIDE trial seems feasible.

10.
Clin Transl Radiat Oncol ; 47: 100790, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38765202

RESUMEN

Background: The PRIDE trial (NOA-28; ARO-2024-01; AG-NRO-06; NCT05871021) is designed to determine whether a dose escalation with 75.0 Gy in 30 fractions can enhance the median overall survival (OS) in patients with methylguanine methyltransferase (MGMT) promotor unmethylated glioblastoma compared to historical median OS rates, while being isotoxic to historical cohorts through the addition of concurrent bevacizumab (BEV). To ensure protocol-compliant irradiation planning with all study centers, a dummy run was planned and the plan quality was evaluated. Methods: A suitable patient case was selected and the computed tomography (CT), magnetic resonance imaging (MRI) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) contours were made available. Participants at the various intended study sites performed radiation planning according to the PRIDE clinical trial protocol. The treatment plans and dose grids were uploaded as Digital Imaging and Communications in Medicine (DICOM) files to a cloud-based platform. Plan quality and protocol adherence were analyzed using a standardized checklist, scorecards and indices such as Dice Score (DSC) and Hausdorff Distance (HD). Results: Median DSC was 0.89, 0.90, 0.88 for PTV60, PTV60ex (planning target volume receiving 60.0 Gy for the standard and the experimental plan, respectively) and PTV75 (PTV receiving 75.0 Gy in the experimental plan), respectively. Median HD values were 17.0 mm, 13.9 mm and 12.1 mm, respectively. These differences were also evident in the volumes: The PTV60 had a volume range of 219.1-391.3 cc (median: 261.9 cc) for the standard plans, while the PTV75 volumes for the experimental plans ranged from 71.5-142.7 cc (median: 92.3 cc). The structures with the largest deviations in Dice score were the pituitary gland (median 0.37, range 0.00-0.69) and the right lacrimal gland (median 0.59, range 0.42-0.78). Conclusions: The deviations revealed the necessity of systematic trainings with appropriate feedback before the start of clinical trials in radiation oncology and the constant monitoring of protocol compliance throw-out the study. Trial registration: NCT05871021.

11.
Cancers (Basel) ; 15(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38001664

RESUMEN

The advancement of systemic targeted treatments has led to improvements in the management of metastatic disease, particularly in terms of survival outcomes. However, brain metastases remain less responsive to systemic therapies, underscoring the significance of local interventions for comprehensive disease control. Over the past years, the threshold for treating brain metastases through stereotactic radiosurgery has risen. Yet, as the number of treated metastases increases, treatment complexity and duration also escalate. This trend has made multi-isocenter radiosurgery treatments, such as those with the Gamma Knife, challenging to plan and lengthy for patients. In contrast, single-isocenter approaches employing linear accelerators offer an efficient and expeditious treatment option. This review delves into the literature, comparing different linear-accelerator-based techniques with each other and in relation to dedicated systems, focusing on dosimetric considerations and feasibility.

12.
Clin Transl Radiat Oncol ; 39: 100573, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36655118

RESUMEN

Purpose and objective: Adding stereotactic radiosurgery (SRS) to combined immune checkpoint therapy with ipilimumab and nivolumab (IPI + NIVO) has led to promising results for patients with melanoma brain metastases (MBM). This study retrospectively analyzes the toxicity profile depending on the timing of SRS with regard to IPI + NIVO. Materials and methods: For this study, the clinical database was searched for all patients with MBM who were treated with SRS and IPI + NIVO. The patients were separated into three groups: group A completed IPI + NIVO (usually up to four cycles) >14 days before SRS, in group B IPI + NIVO was initiated>14 days after SRS, and group C received SRS concurrently to IPI + NIVO. Treatment related toxicity was obtained from clinical and neuroradiological records. Analyses were performed using the Fisher-Yates-test. Results: 31 patients were assessed including six (19.4 %), seven (22.6 %) and 18 (58.1 %) patients, in groups A, B and C, respectively. Baseline prognostic markers between groups were balanced. In total, five (16.1 %) patients experienced neurological grade 3 toxicities related to SRS. All of these five patients were in group C, which was near-significantly correlated with a risk for grade 3 toxicities (p = 0.058). Post-hoc analyses showed that a maximum time period of seven days between SRS and IPI + NIVO was significantly correlated with grade 3 toxicity (p = 0.048). Conclusion: Application of SRS to IPI + NIVO within a seven-day span was related to higher toxicity rates in this retrospective analysis. After previous studies focused on immune checkpoint monotherapies with SRS and declared it as safe, this study indicates that concomitant application of IPI + NIVO and SRS might increase side effects. Prospective validation is warranted to corroborate these findings.

13.
Radiother Oncol ; 186: 109744, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330054

RESUMEN

BACKGROUND AND PURPOSE: There is no randomized evidence comparing whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS) in the treatment of multiple brain metastases. This prospective nonrandomized controlled single arm trial attempts to reduce the gap until prospective randomized controlled trial results are available. MATERIAL AND METHODS: We included patients with 4-10 brain metastases and ECOG performance status ≤ 2 from all histologies except small-cell lung cancer, germ cell tumors, and lymphoma. The retrospective WBRT-cohort was selected 2:1 from consecutive patients treated within 2012-2017. Propensity-score matching was performed to adjust for confounding factors such as sex, age, primary tumor histology, dsGPA score, and systemic therapy. SRS was performed using a LINAC-based single-isocenter technique employing prescription doses from 15-20Gyx1 at the 80% isodose line. The historical control consisted of equivalent WBRT dose regimens of either 3Gyx10 or 2.5Gyx14. RESULTS: Patients were recruited from 2017-2020, end of follow-up was July 1st, 2021. 40 patients were recruited to the SRS-cohort and 70 patients were eligible as controls in the WBRT-cohort. Median OS, and iPFS were 10.4 months (95%-CI 9.3-NA) and 7.1 months (95%-CI 3.9-14.2) for the SRS-cohort, and 6.5 months (95%-CI 4.9-10.4), and 5.9 months (95%-CI 4.1-8.8) for the WBRT-cohort, respectively. Differences were non-significant for OS (HR: 0.65; 95%-CI 0.40-1.05; P =.074) and iPFS (P =.28). No grade III toxicities were observed in the SRS-cohort. CONCLUSION: This trial did not meet its primary endpoint as the OS-improvement of SRS compared to WBRT was non-significant and thus superiority could not be proven. Prospective randomized trials in the era of immunotherapy and targeted therapies are warranted.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Radiocirugia/métodos , Estudios Retrospectivos , Estudios Prospectivos , Irradiación Craneana/métodos , Neoplasias Encefálicas/secundario , Encéfalo , Resultado del Tratamiento
14.
Adv Radiat Oncol ; 8(3): 101185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36896209

RESUMEN

Purpose: Translocator protein (TSPO) positron emission tomography (PET) using 18F-GE-180 shows high tumor-to-brain contrast in high-grade glioma (HGG), even in areas without magnetic resonance imaging (MRI) contrast enhancement. Until now, the benefit of 18F-GE-180 PET in primary radiation therapy (RT) and reirradiation (reRT) treatment planning for patients with HGG has not been assessed. Methods and Materials: The possible benefit of 18F-GE-180 PET in RT and reRT planning was retrospectively evaluated through post hoc spatial correlations of PET-based biological tumor volumes (BTVs) with conventional MRI-based consensus gross tumor volumes (cGTVs). To find the ideal threshold for BTV definition in RT and reRT treatment planning, tumor-to-background activity thresholds of 1.6, 1.8, and 2.0 were applied. Spatial overlap of PET- and MRI-based tumor volumes was measured by the Sørensen-Dice coefficient (SDC) and the conformity index (CI). Additionally, the minimal margin to include the entire BTV into the expanded cGTV was determined. Results: Thirty-five primary RT and 16 reRT cases were examined. BTV1.6, BTV1.8, and BTV2.0 were significantly larger than corresponding cGTV volumes in primary RT (median volumes: 67.4, 50.7, and 39.1, respectively, vs 22.6 cm3; P < .001, P < .001, and P = .017, respectively; Wilcoxon test) and reRT cases (median volumes: 80.5, 55.0, and 41.6, respectively, vs 22.7 cm3; P = .001, P = .005, and P = .144, respectively; Wilcoxon test). BTV1.6, BTV1.8, and BTV2.0 showed low but increasing conformity with cGTVs in the primary RT (SDC: 0.51, 0.55, and 0.58, respectively; CI: 0.35, 0.38, and 0.41, respectively) and reRT setting (SDC: 0.38, 0.40, and 0.40, respectively; CI: 0.24, 0.25, and 0.25, respectively). The minimal margin required to include the BTV within the cGTV was significantly smaller in the RT versus the reRT setting for thresholds 1.6 and 1.8 but not significantly different for threshold 2.0 (median margin: 16, 12, and 10, respectively, vs 21.5, 17.5, and 13 mm, respectively; P = .007, P = .031, and P = .093, respectively; Mann-Whitney U test). Conclusions: 18F-GE-180 PET provides valuable information in RT treatment planning for patients with HGG. 18F-GE-180-based BTVs with a threshold of 2.0 were most consistent in primary and reRT.

15.
BJR Case Rep ; 8(1): 20200168, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35136630

RESUMEN

This case report describes a patient with squamous cell carcinoma of the lung (cT4 (Infiltration of left pulmonary artery) cN2 cM0, TNM eighth edition) and subsequent tumor-induced atelectasis of the left upper lobe. Despite initially presenting himself with a poor performance status (ECOG-PS III) and diminished lung function, the patient was treated with image-guided thoracic irradiation to a total dose of 45.0 Gy (to the whole planning target volume) / 52.5 Gy (as simultaneous integrated boost to the Primary Tumor) applied in 15 daily fractions. Through the radiation treatment, the upper lobe could be reaerated, and the patient's lung function and performance were improved.

16.
Radiat Oncol ; 17(1): 8, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033132

RESUMEN

BACKGROUND AND PURPOSE: Chemoradiotherapy (CRT) followed by a brachytherapy (BT) boost is the standard of care for patients with locally advanced or recurrent gynecological cancer (LARGC). However, not every patient is suitable for BT. Therefore, we investigated the feasibility of an MR-guided SBRT boost (MRg-SBRT boost) following CRT of the pelvis. MATERIAL AND METHODS: Ten patients with LARGC were analyzed retrospectively. The patients were not suitable for BT due to extensive infiltration of the pelvic wall (10%), other adjacent organs (30%), or both (50%), or ineligibility for anesthesia (10%). Online-adaptive treatment planning was performed to control for interfractional anatomical changes. Treatment parameters and toxicity were evaluated to assess the feasibility of MRg-SBRT boost. RESULTS: MRg-SBRT boost was delivered to a median total dose of 21.0 Gy in 4 fractions. The median optimized PTV (PTVopt) size was 43.5ccm. The median cumulative dose of 73.6Gy10 was delivered to PTVopt. The cumulative median D2ccm of the rectum was 63.7 Gy; bladder 72.2 Gy; sigmoid 65.8 Gy; bowel 59.9 Gy (EQD23). The median overall treatment time/fraction was 77 min, including the adaptive workflow in 100% of fractions. The median duration of the entire treatment was 50 days. After a median follow-up of 9 months, we observed no CTCAE ≥ °II toxicities. CONCLUSION: These early results report the feasibility of an MRg-SBRT boost approach in patients with LARGC, who were not candidates for BT. When classical BT-OAR constraints are followed, the therapy was well tolerated. Long-term follow-up is needed to validate the results.


Asunto(s)
Neoplasias de los Genitales Femeninos/radioterapia , Imagen por Resonancia Magnética , Radiocirugia/métodos , Radioterapia Guiada por Imagen , Adulto , Anciano , Anciano de 80 o más Años , Braquiterapia , Quimioradioterapia , Estudios de Factibilidad , Femenino , Neoplasias de los Genitales Femeninos/terapia , Humanos , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Estudios Retrospectivos
17.
Radiat Oncol ; 16(1): 40, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622365

RESUMEN

PURPOSE: Frequency and risk profile of radiation necrosis (RN) in patients with glioma undergoing either upfront stereotactic brachytherapy (SBT) and additional salvage external beam radiotherapy (EBRT) after tumor recurrence or vice versa remains unknown. METHODS: Patients with glioma treated with low-activity temporary iodine-125 SBT at the University of Munich between 1999 and 2016 who had either additional upfront or salvage EBRT were included. Biologically effective doses (BED) were calculated. RN was diagnosed using stereotactic biopsy and/or metabolic imaging. The rate of RN was estimated with the Kaplan Meier method. Risk factors were obtained from logistic regression models. RESULTS: Eighty-six patients (49 male, 37 female, median age 47 years) were included. 38 patients suffered from low-grade and 48 from high-grade glioma. Median follow-up was 15 months after second treatment. Fifty-eight patients received upfront EBRT (median total dose: 60 Gy), and 28 upfront SBT (median reference dose: 54 Gy, median dose rate: 10.0 cGy/h). Median time interval between treatments was 19 months. RN was diagnosed in 8/75 patients. The 1- and 2-year risk of RN was 5.1% and 11.7%, respectively. Tumor volume and irradiation time of SBT, number of implanted seeds, and salvage EBRT were risk factors for RN. Neither of the BED values nor the time interval between both treatments gained prognostic influence. CONCLUSION: The combination of upfront EBRT and salvage SBT or vice versa is feasible for glioma patients. The risk of RN is mainly determined by the treatment volume but not by the interval between therapies.


Asunto(s)
Glioma/radioterapia , Recurrencia Local de Neoplasia , Traumatismos por Radiación/etiología , Reirradiación/efectos adversos , Adolescente , Adulto , Anciano , Braquiterapia/efectos adversos , Femenino , Glioma/patología , Humanos , Radioisótopos de Yodo/efectos adversos , Masculino , Persona de Mediana Edad , Necrosis , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/patología , Dosificación Radioterapéutica , Estudios Retrospectivos , Factores de Riesgo , Terapia Recuperativa/efectos adversos , Resultado del Tratamiento , Adulto Joven
18.
Neurooncol Adv ; 3(1): vdab114, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704034

RESUMEN

BACKGROUND: Functional preservation in patients with WHO grade I meningioma involving the cavernous sinus (CSM) is crucial for long-term tumor control. Concise data on the functional outcome of an interdisciplinary, multimodal treatment are scarce. We analyzed functional outcome and tumor control in CSM patients following maximal safe resection (MSR), fractionated stereotactic radiotherapy (FSRT), or combination of them, retrospectively. METHODS: Patients with WHO grade I CSM treated between 2003 and 2017 were included. Prior to FSRT, a 68Ga-DOTATATE PET/CT was performed for radiation planning. Progression-free survival (PFS) was analyzed using Kaplan-Meier method and log-rank test was performed to test differences between groups. Visual function was analyzed at baseline and follow-up. RESULTS: Eighty-five patients were included. MSR alone was performed in 48 patients (group A), MSR followed by FSRT in 25 patients (group B), and FSRT alone in 12 patients (group C). Intracranial tumor volumes were higher in A and B compared to C (median 9.2/10.8/4.3 ccm for A/B/C, P = .023). Median follow-up was 47/46/45 months and PFS at 5 years 55.7%, 100%, and 100% in A/B/C, respectively (P < .001). Optic nerve compression was more common in A (91.7%) and B (84.0%) than C (16.7%), P < .001. Post-therapeutic new onset or deterioration of double vision was observed in 29% (A), 17% (B), and 0% (C). CONCLUSION: Personalized treatment strategies for CSM are essential to control space-occupying or functionally compromising lesions. The additional potential side effect of radiotherapy seems to be justified under the aspect of longer tumor control with low functional risk. Without space-occupying effect of CSM, FSRT alone is reasonably possible.

19.
Radiat Oncol ; 16(1): 165, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454558

RESUMEN

BACKGROUND: Multifocal manifestation of high-grade glioma is a rare disease with very unfavourable prognosis. The pathogenesis of multifocal glioma and pathophysiological differences to unifocal glioma are not fully understood. The optimal treatment of patients suffering from multifocal high-grade glioma is not defined in the current guidelines, therefore individual case series may be helpful as guidance for clinical decision-making. METHODS: Patients with multifocal high-grade glioma treated with conventionally fractionated radiation therapy (RT) in our institution with or without concomitant chemotherapy between April 2011 and April 2019 were retrospectively analysed. Multifocality was neuroradiologically assessed and defined as at least two independent contrast-enhancing foci in the MRI T1 contrast-enhanced sequence. IDH mutational status and MGMT methylation status were assessed from histopathology records. GTV, PTV as well as the V30Gy, V45Gy and D2% volumes of the brain were analysed. Overall and progression-free survival were calculated from the diagnosis until death and from start of radiation therapy until diagnosis of progression of disease in MRI for all patients. RESULTS: 20 multifocal glioma cases (18 IDH wild-type glioblastoma cases, one diffuse astrocytic glioma, IDH wild-type case with molecular features of glioblastoma and one anaplastic astrocytoma, IDH wild-type case) were included into the analysis. Resection was performed in two cases and stereotactic biopsy only in 18 cases before the start of radiation therapy. At the start of radiation therapy patients were 61 years old in median (range 42-84 years). Histopathological examination showed IDH wild-type in all cases and MGMT promotor methylation in 11 cases (55%). Prescription schedules were 60 Gy (2 Gy × 30), 59.4 Gy (1.8 Gy × 33), 55 Gy (2.2 Gy × 25) and 50 Gy (2.5 Gy × 20) in 15, three, one and one cases, respectively. Concomitant temozolomide chemotherapy was applied in 16 cases, combined temozolomide/lomustine chemotherapy was applied in one case and concomitant bevacizumab therapy in one case. Median number of GTVs was three. Median volume of the sum of the GTVs was 26 cm3. Median volume of the PTV was 425.7 cm3 and median PTV to brain ratio 32.8 percent. Median D2% of the brain was 61.5 Gy (range 51.2-62.7) and median V30Gy and V45 of the brain were 59.9 percent (range 33-79.7) and 40.7 percent (range 14.9-64.1), respectively. Median survival was eight months (95% KI 3.6-12.4 months) and median progression free survival after initiation of RT five months (95% CI 2.8-7.2 months). Grade 2 toxicities were detected in eight cases and grade 3 toxicities in four cases consisting of increasing edema in three cases and one new-onset seizure. One grade 4 toxicity was detected, which was febrile neutropenia related to concomitant chemotherapy. CONCLUSION: Conventionally fractionated RT with concomitant chemotherapy could safely be applied in multifocal high-grade glioma in this case series despite large irradiation treatment fields.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Quimioradioterapia , Fraccionamiento de la Dosis de Radiación , Femenino , Glioma/tratamiento farmacológico , Glioma/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Radioterapia/efectos adversos , Estudios Retrospectivos
20.
Radiat Oncol ; 15(1): 37, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059731

RESUMEN

BACKGROUND: There is limited data on the use of targeted or immunotherapy (TT/IT) in combination with single fraction stereotactic radiosurgery (SRS) in patients with melanoma brain metastasis (MBM). Therefore, we analyzed the outcome and toxicity of SRS alone compared to SRS in combination with TT/IT. METHODS: Patients with MBM treated with single session SRS at our department between 2014 and 2017 with a minimum follow-up of 3 months after first SRS were included. The primary endpoint of this study was local control (LC). Secondary endpoints were distant intracranial control, radiation necrosis-free survival (RNFS), and overall survival (OS). The local/ distant intracranial control rates, RNFS and OS were analyzed using the Kaplan-Meier method. The log-rank test was used to test differences between groups. Cox proportional hazard model was performed for univariate continuous variables and multivariate analyses. RESULTS: Twenty-eight patients (17 male and 11 female) with 52 SRS-lesions were included. The median follow-up was 19 months (range 14-24 months) after first SRS. Thirty-six lesions (69.2%) were treated with TT/IT simultaneously (4 weeks before and 4 weeks after SRS), while 16 lesions (30.8%) were treated with SRS alone or with sequential TT/IT. The 1-year local control rate was 100 and 83.3% for SRS with TT/IT and SRS alone (p = 0.023), respectively. The estimated 1-year RNFS was 90.0 and 82.1% for SRS in combination with TT/IT and SRS alone (p = 0.935). The distant intracranial control rate after 1 year was 47.7 and 50% for SRS in combination with TT/IT and SRS alone (p = 0.933). On univariate analysis, the diagnosis-specific Graded Prognostic Assessment including the BRAF status (Melanoma-molGPA) was associated with a significantly improved LC. Neither gender nor SRS-PTV margin had a prognostic impact on LC. V10 and V12 were significantly associated with RNFS (p < 0.001 and p = 0.004). CONCLUSION: SRS with simultaneous TT/IT significantly improved LC with no significant difference in radiation necrosis rate. The therapy combination appears to be effective and safe. However, prospective studies on SRS with simultaneous TT/IT are necessary and ongoing. TRIAL REGISTRATION: The institutional review board approved this analysis on 10th of February 2015 and all patients signed informed consent (UE nr. 128-14).


Asunto(s)
Neoplasias Encefálicas/terapia , Inmunoterapia/mortalidad , Melanoma/terapia , Radiocirugia/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/secundario , Terapia Combinada , Femenino , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA