Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Annu Rev Biochem ; 91: 423-447, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35363508

RESUMEN

Biochemistry and molecular biology rely on the recognition of structural complementarity between molecules. Molecular interactions must be both quickly reversible, i.e., tenuous, and specific. How the cell reconciles these conflicting demands is the subject of this article. The problem and its theoretical solution are discussed within the wider theoretical context of the thermodynamics of stochastic processes (stochastic thermodynamics). The solution-an irreversible reaction cycle that decreases internal error at the expense of entropy export into the environment-is shown to be widely employed by biological processes that transmit genetic and regulatory information.


Asunto(s)
Cinética , Procesos Estocásticos , Termodinámica
2.
Cell ; 133(4): 716-26, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18485878

RESUMEN

The rate-limiting step of transcriptional activation in eukaryotes, and thus the critical point for gene regulation, is unknown. Combining biochemical analyses of the chromatin transition at the transcriptionally induced PHO5 promoter in yeast with modeling based on a small number of simple assumptions, we demonstrate that random removal and reformation of promoter nucleosomes can account for stochastic and kinetic properties of PHO5 expression. Our analysis suggests that the disassembly of promoter nucleosomes is rate limiting for PHO5 expression, and supports a model for the underlying mechanism of promoter chromatin remodeling, which appears to conserve a single nucleosome on the promoter at all times.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas , Regiones Promotoras Genéticas , Transcripción Genética , Fosfatasa Ácida , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 117(5): 2456-2461, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964832

RESUMEN

Specificity in transcriptional regulation is imparted by transcriptional activators that bind to specific DNA sequences from which they stimulate transcription. Specificity may be increased by slowing down the kinetics of regulation: by increasing the energy for dissociation of the activator-DNA complex or decreasing activator concentration. In general, higher dissociation energies imply longer DNA dwell times of the activator; the activator-bound gene may not readily turn off again. Lower activator concentrations entail longer pauses between binding events; the activator-unbound gene is not easily turned on again and activated transcription occurs in stochastic bursts. We show that kinetic proofreading of activator-DNA recognition-insertion of an energy-dissipating delay step into the activation pathway for transcription-reconciles high specificity of transcriptional regulation with fast regulatory kinetics. We show that kinetic proofreading results from the stochastic removal and reformation of promoter nucleosomes, at a distance from equilibrium.


Asunto(s)
Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Transactivadores/metabolismo , Activación Transcripcional , ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Cinética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Procesos Estocásticos , Iniciación de la Transcripción Genética
4.
Genes Dev ; 29(24): 2563-75, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26680301

RESUMEN

Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Drosophila melanogaster/genética , Nucleosomas/metabolismo , Animales , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Humanos , Microscopía Electrónica , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/ultraestructura , Regiones Promotoras Genéticas , Conformación Proteica , Estabilidad Proteica , Células Sf9
5.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277458

RESUMEN

The general transcription factor TFIID is a core promoter selectivity factor that recognizes DNA sequence elements and nucleates the assembly of a pre-initiation complex (PIC). The mechanism by which TFIID recognizes the promoter is poorly understood. The TATA-box binding protein (TBP) is a subunit of the multi-protein TFIID complex believed to be key in this process. We reconstituted transcription from highly purified components on a ribosomal protein gene (RPS5) and discovered that TFIIDΔTBP binds and rearranges the promoter DNA topology independent of TBP. TFIIDΔTBP binds ~200 bp of the promoter and changes the DNA topology to a larger extent than the nucleosome core particle. We show that TBP inhibits the DNA binding activities of TFIIDΔTBP and conclude that the complete TFIID complex may represent an auto-inhibited state. Furthermore, we show that the DNA binding activities of TFIIDΔTBP are required for assembly of a PIC poised to select the correct transcription start site (TSS).


Asunto(s)
Reordenamiento Génico/genética , Regiones Promotoras Genéticas , Proteínas Ribosómicas/genética , TATA Box/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , ADN/metabolismo , Genes Esenciales , Imagenología Tridimensional , Unión Proteica , Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 111(50): 17893-8, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25468975

RESUMEN

Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter's deterministic response to variation in its molecular surroundings). Here, we show--by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies--that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect.


Asunto(s)
Fosfatasa Ácida/genética , Regulación Fúngica de la Expresión Génica/genética , Variación Genética , Nucleosomas/genética , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Microscopía Electrónica , Modelos Biológicos , Conformación de Ácido Nucleico , Nucleosomas/ultraestructura , Procesos Estocásticos
7.
PLoS Biol ; 11(8): e1001621, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940458

RESUMEN

The number of mRNA and protein molecules expressed from a single gene molecule fluctuates over time. These fluctuations have been attributed, in part, to the random transitioning of promoters between transcriptionally active and inactive states, causing transcription to occur in bursts. However, the molecular basis of transcriptional bursting remains poorly understood. By electron microscopy of single PHO5 gene molecules from yeast, we show that the "activated" promoter assumes alternative nucleosome configurations at steady state, including the maximally repressive, fully nucleosomal, and the maximally non-repressive, nucleosome-free, configuration. We demonstrate that the observed probabilities of promoter nucleosome configurations are obtained from a simple, intrinsically stochastic process of nucleosome assembly, disassembly, and position-specific sliding; and we show that gene expression and promoter nucleosome configuration can be mechanistically coupled, relating promoter nucleosome dynamics and gene expression fluctuations. Together, our findings suggest a structural basis for transcriptional bursting, and offer new insights into the mechanism of transcriptional regulation and the kinetics of promoter nucleosome transitions.


Asunto(s)
Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Regulación Fúngica de la Expresión Génica , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Nucleic Acids Res ; 42(1): e2, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24106087

RESUMEN

Chromatin is the template for replication and transcription in the eukaryotic nucleus, which needs to be defined in composition and structure before these processes can be fully understood. We report an isolation protocol for the targeted purification of specific genomic regions in their native chromatin context from Saccharomyces cerevisiae. Subdomains of the multicopy ribosomal DNA locus containing transcription units of RNA polymerases I, II or III or an autonomous replication sequence were independently purified in sufficient amounts and purity to analyze protein composition and histone modifications by mass spectrometry. We present and discuss the proteomic data sets obtained for chromatin in different functional states. The native chromatin was further amenable to electron microscopy analysis yielding information about nucleosome occupancy and positioning at the single-molecule level. We also provide evidence that chromatin from virtually every single copy genomic locus of interest can be purified and analyzed by this technique.


Asunto(s)
Cromosomas Fúngicos/química , Saccharomyces cerevisiae/genética , Fosfatasa Ácida/genética , ADN Ribosómico/química , ADN Ribosómico/aislamiento & purificación , Genómica/métodos , Histonas/metabolismo , Espectrometría de Masas , Nucleosomas/química , Regiones Promotoras Genéticas , Proteoma/aislamiento & purificación , ARN Ribosómico 5S/química , ARN Ribosómico 5S/ultraestructura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
9.
J Biol Chem ; 288(9): 6325-32, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23303183

RESUMEN

Whereas individual RNA polymerase II (pol II)-general transcription factor (GTF) complexes are unstable, an assembly of pol II with six GTFs and promoter DNA could be isolated in abundant homogeneous form. The resulting complete pol II transcription preinitiation complex (PIC) contained equimolar amounts of all 31 protein components. An intermediate in assembly, consisting of four GTFs and promoter DNA, could be isolated and supplemented with the remaining components for formation of the PIC. Nuclease digestion and psoralen cross-linking mapped the PIC between positions -70 and -9, centered on the TATA box. Addition of ATP to the PIC resulted in quantitative conversion to an open complex, which retained all 31 proteins, contrary to expectation from previous studies. Addition of the remaining NTPs resulted in run-off transcription, with an efficiency that was promoter-dependent and was as great as 17.5% with the promoters tested.


Asunto(s)
ADN de Hongos/química , Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/química , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/química , Transcripción Genética/fisiología , ADN de Hongos/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo
10.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562899

RESUMEN

Genome-wide identification of chromatin organization and structure has been generally probed by measuring accessibility of the underlying DNA to nucleases or methyltransferases. These methods either only observe the positioning of a single nucleosome or rely on large enzymes to modify or cleave the DNA. We developed adduct sequencing (Add-seq), a method to probe chromatin accessibility by treating chromatin with the small molecule angelicin, which preferentially intercalates into DNA not bound to core nucleosomes. We show that Nanopore sequencing of the angelicin-modified DNA is possible and allows visualization and analysis of long single molecules with distinct chromatin structure. The angelicin modification can be detected from the Nanopore current signal data using a neural network model trained on unmodified and modified chromatin-free DNA. Applying Add-seq to Saccharomyces cerevisiae nuclei, we identified expected patterns of accessibility around annotated gene loci in yeast. We also identify individual clusters of single molecule reads displaying different chromatin structure at specific yeast loci, which demonstrates heterogeneity in the chromatin structure of the yeast population. Thus, using Add-seq, we are able to profile DNA accessibility in the yeast genome across long molecules.

11.
J Biol Chem ; 286(47): 40556-65, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21979950

RESUMEN

Analysis of in vivo chromatin remodeling at the PHO5 promoter of yeast led to the conclusion that remodeling removes nucleosomes from the promoter by disassembly rather than sliding away from the promoter. The catalytic activities required for nucleosome disassembly remain unknown. Transcriptional activation of the yeast PHO8 gene was found to depend on the chromatin-remodeling complex SWI/SNF, whereas activation of PHO5 was not. Here, we show that PHO8 gene circles formed in vivo lose nucleosomes upon PHO8 induction, indicative of nucleosome removal by disassembly. Our quantitative analysis of expression noise and chromatin-remodeling data indicates that the dynamics of continual nucleosome removal and reformation at the activated promoters of PHO5 and PHO8 are closely similar. In contrast to PHO5, however, activator-stimulated transcription of PHO8 appears to be limited mostly to the acceleration of promoter nucleosome disassembly with little or no acceleration of promoter transitions following nucleosome disassembly, accounting for the markedly lower expression level of PHO8.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Fosfatasa Alcalina/genética , Biocatálisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
12.
Nat Commun ; 13(1): 526, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35082292

RESUMEN

The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression.


Asunto(s)
Genes cdc , Nucleosomas/metabolismo , Unión Proteica , Sitio de Iniciación de la Transcripción , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Cromatina , ADN/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
13.
Mol Syst Biol ; 6: 431, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21081924

RESUMEN

Gene transcription requires a sequence of promoter state transitions, including chromatin remodeling, assembly of the transcription machinery, and clearance of the promoter by RNA polymerase. The rate-limiting steps in this sequence are regulated by transcriptional activators that bind at specific promoter elements. As the transition kinetics of individual promoters cannot be observed, the identity of the activator-controlled steps has remained a matter of speculation. In this study, we investigated promoter chromatin structure, and the intrinsic noise of expression over a wide range of expression values for the PHO5 gene of yeast. Interpretation of our results with regard to a stochastic model of promoter chromatin remodeling and gene expression suggests that the regulatory architecture of the gene expression process is measurably reflected in its intrinsic noise profile. Our chromatin structure and noise analyses indicate that the activator of PHO5 transcription stimulates the rates of promoter nucleosome disassembly, and assembly of the transcription machinery after nucleosome removal, but no other rates of the expression process.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Biología de Sistemas/métodos , Transcripción Genética , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hibridación Fluorescente in Situ , Modelos Genéticos , Mutación/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Synth Biol (Oxf) ; 5(1): ysaa007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32775697

RESUMEN

Gene expression in Saccharomyces cerevisiae is regulated at multiple levels. Genomic and epigenomic mapping of transcription factors and chromatin factors has led to the delineation of various modular regulatory elements-enhancers (upstream activating sequences), core promoters, 5' untranslated regions (5' UTRs) and transcription terminators/3' untranslated regions (3' UTRs). However, only a few of these elements have been tested in combinations with other elements and the functional interactions between the different modular regulatory elements remain under explored. We describe a simple and rapid approach to build a combinatorial library of regulatory elements and have used this library to study 26 different enhancers, core promoters, 5' UTRs and transcription terminators/3' UTRs to estimate the contribution of individual regulatory parts in gene expression. Our combinatorial analysis shows that while enhancers initiate gene expression, core promoters modulate the levels of enhancer-mediated expression and can positively or negatively affect expression from even the strongest enhancers. Principal component analysis (PCA) indicates that enhancer and promoter function can be explained by a single principal component while UTR function involves multiple functional components. The PCA also highlights outliers and suggest differences in mechanisms of regulation by individual elements. Our data also identify numerous regulatory cassettes composed of different individual regulatory elements that exhibit equivalent gene expression levels. These data thus provide a catalog of elements that could in future be used in the design of synthetic regulatory circuits.

15.
Mol Cell Biol ; 23(24): 9275-82, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645537

RESUMEN

Single-copy gene and promoter regions have been excised from yeast chromosomes and have been purified as chromatin by conventional and affinity methods. Promoter regions isolated in transcriptionally repressed and activated states maintain their characteristic chromatin structures. Gel filtration analysis establishes the uniformity of the transcriptionally activated state. Activator proteins interact in the manner anticipated from previous studies in vivo. This work opens the way to the direct study of specific gene regions of eukaryotic chromosomes in diverse functional and structural states.


Asunto(s)
Cromatina/genética , Cromatina/aislamiento & purificación , Cromosomas Fúngicos/genética , Saccharomyces cerevisiae/genética , Cromatografía de Afinidad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Regiones Promotoras Genéticas , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
16.
FEBS Lett ; 579(4): 899-903, 2005 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-15680971

RESUMEN

An RNA polymerase II promoter has been isolated in transcriptionally activated and repressed states. Topological and nuclease digestion analyses have revealed a dynamic equilibrium between nucleosome removal and reassembly upon transcriptional activation, and have further shown that nucleosomes are removed by eviction of histone octamers rather than by sliding. The promoter, once exposed, assembles with RNA polymerase II, general transcription factors, and Mediator in a approximately 3 MDa transcription initiation complex. X-ray crystallography has revealed the structure of RNA polymerase II, in the act of transcription, at atomic resolution. Extension of this analysis has shown how nucleotides undergo selection, polymerization, and eventual release from the transcribing complex. X-ray and electron crystallography have led to a picture of the entire transcription initiation complex, elucidating the mechanisms of promoter recognition, DNA unwinding, abortive initiation, and promoter escape.


Asunto(s)
Células Eucariotas/metabolismo , Nucleosomas/química , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/química , Transcripción Genética , Cristalografía por Rayos X , Estructura Molecular
17.
Genes (Basel) ; 6(3): 469-83, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26136240

RESUMEN

Transcriptional activation of eukaryotic genes is accompanied, in general, by a change in the sensitivity of promoter chromatin to endonucleases. The structural basis of this alteration has remained elusive for decades; but the change has been viewed as a transformation of one structure into another, from "closed" to "open" chromatin. In contradistinction to this static and deterministic view of the problem, a dynamical and probabilistic theory of promoter chromatin has emerged as its solution. This theory, which we review here, explains observed variation in promoter chromatin structure at the level of single gene molecules and provides a molecular basis for random bursting in transcription-the conjecture that promoters stochastically transition between transcriptionally conducive and inconducive states. The mechanism of transcriptional regulation may be understood only in probabilistic terms.

18.
Methods Mol Biol ; 1228: 93-121, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25311125

RESUMEN

Nucleosomes occupy a central role in regulating eukaryotic gene expression by blocking access of transcription factors to their target sites on chromosomal DNA. Analysis of chromatin structure and function has mostly been performed by probing DNA accessibility with endonucleases. Such experiments average over large numbers of molecules of the same gene, and more recently, over entire genomes. However, both digestion and averaging erase the structural variation between molecules indicative of dynamic behavior, which must be reconstructed for any theory of regulation. Solution of this problem requires the structural analysis of single gene molecules. In this chapter, we describe a method by which single gene molecules are purified from the yeast Saccharomyces cerevisiae and cross-linked with psoralen, allowing the determination of nucleosome configurations by transmission electron microscopy. We also provide custom analysis software that semi-automates the analysis of micrograph data. This single-gene technique enables detailed examination of chromatin structure at any genomic locus in yeast.


Asunto(s)
Cromatina/química , Cromatina/ultraestructura , Ficusina/farmacología , Genes Fúngicos/genética , Microscopía Electrónica de Transmisión/métodos , Saccharomyces cerevisiae/genética , Centrifugación , Cromatina/efectos de los fármacos , Cromatina/genética , Ensamble y Desensamble de Cromatina , Cromatografía de Afinidad , Técnicas de Cultivo , ADN de Hongos/análisis , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , Proteínas Fúngicas/análisis , Proteínas Fúngicas/aislamiento & purificación , Regulación Fúngica de la Expresión Génica , Procesamiento de Imagen Asistido por Computador , Desnaturalización de Ácido Nucleico , Nucleosomas/ultraestructura , Saccharomyces cerevisiae/citología , Programas Informáticos
19.
Mol Biol Cell ; 25(22): 3451-5, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25368419

RESUMEN

Speaking of current measurements on single ion channel molecules, David Colquhoun wrote in 2006, "Individual molecules behave randomly, so suddenly we had to learn how to deal with stochastic processes." Here I describe theoretical efforts to understand recent experimental observations on the chromatin structure of single gene molecules, a molecular biologist's path toward probabilistic theories.


Asunto(s)
Modelos Estadísticos , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Animales , Simulación por Computador , Cadenas de Markov , Modelos Biológicos , Nucleosomas/química , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Methods Mol Biol ; 1094: 329-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24163000

RESUMEN

Most methods currently available for the analysis of chromatin in vivo rely on a priori knowledge of putative chromatin components or their posttranslational modification state. The isolation of defined native chromosomal regions provides an attractive alternative to obtain a largely unbiased molecular description of chromatin. Here, we describe a strategy combining site-specific recombination at the chromosome with an efficient tandem affinity purification protocol to isolate a single-copy gene locus from the yeast Saccharomyces cerevisiae. The method allows robust enrichment of a targeted chromatin domain, making it amenable to compositional, structural, and biochemical analyses. This technique appears to be suitable to obtain a detailed description of chromatin composition and specific posttranslational histone modification state at virtually any genomic locus in yeast.


Asunto(s)
Bioquímica/métodos , Cromatina/metabolismo , Dosificación de Gen , Genes Fúngicos/genética , Sitios Genéticos , Saccharomyces cerevisiae/genética , Proliferación Celular , Cromatografía de Afinidad , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Inmunoglobulina G/metabolismo , Fenómenos Magnéticos , Microesferas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA