Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(19): 9003-9010, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756214

RESUMEN

Nonlinear optical metasurfaces offer a possibility to perform frequency mixing without the phase-matching constraints of bulk nonlinear crystals and with control of the local nonlinear response at a sub-wavelength scale. Nonlinear inter-subband polaritonic metasurfaces created by combining the semiconductor heterostructures with quantum-engineered inter-subband nonlinear response and electromagnetically engineered metal-clad nanoresonators offer by far the largest second-order nonlinear response of all condensed matter systems reported to date. However, the nonlinear optical response of these metasurfaces is limited by optical intensity saturation in the nanoresonator hot spots that prevented the achievement of power conversion efficiencies over 0.2% in three-wave mixing experiments. In this study, we propose and experimentally demonstrate dielectric inter-subband polaritonic metasurfaces for second-harmonic generation that achieve 0.37% power conversion efficiency. Our structure is created by a new design approach that combines dielectric resonators inducing Mie resonant modes with a lattice resonance to achieve a uniform and high field enhancement throughout the meta-atom volume.

2.
Nano Lett ; 20(11): 8032-8039, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33112621

RESUMEN

Nonlinear metasurfaces are advancing into a new paradigm of "flat nonlinear optics" owing to the ability to engineer local nonlinear responses in subwavelength-thin films. Recently, attempts have been made to expand the design space of nonlinear metasurfaces through nonlinear chiral responses. However, the development of metasurfaces that display both giant nonlinear circular dichroism and significantly large nonlinear optical response is still an unresolved challenge. Herein, we propose a method that induces giant nonlinear responses with near-unity circular dichroism using polaritonic metasurfaces with optical modes in chiral plasmonic nanocavities coupled with intersubband transitions in semiconductor heterostructures designed to have giant second and third order nonlinear responses. A stark contrast between effective nonlinear susceptibility elements for the two spin states of circularly polarized pump beams was seen in the hybrid structure. Experimentally, near-unity nonlinear circular dichroism and conversion efficiencies beyond 10-4% for second- and third-harmonic generation were achieved simultaneously in a single chip.

3.
Nature ; 511(7507): 65-9, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990746

RESUMEN

Intersubband transitions in n-doped multi-quantum-well semiconductor heterostructures make it possible to engineer one of the largest known nonlinear optical responses in condensed matter systems--but this nonlinear response is limited to light with electric field polarized normal to the semiconductor layers. In a different context, plasmonic metasurfaces (thin conductor-dielectric composite materials) have been proposed as a way of strongly enhancing light-matter interaction and realizing ultrathin planarized devices with exotic wave properties. Here we propose and experimentally realize metasurfaces with a record-high nonlinear response based on the coupling of electromagnetic modes in plasmonic metasurfaces with quantum-engineered electronic intersubband transitions in semiconductor heterostructures. We show that it is possible to engineer almost any element of the nonlinear susceptibility tensor of these structures, and we experimentally verify this concept by realizing a 400-nm-thick metasurface with nonlinear susceptibility of greater than 5 × 10(4) picometres per volt for second harmonic generation at a wavelength of about 8 micrometres under normal incidence. This susceptibility is many orders of magnitude larger than any second-order nonlinear response in optical metasurfaces measured so far. The proposed structures can act as ultrathin highly nonlinear optical elements that enable efficient frequency mixing with relaxed phase-matching conditions, ideal for realizing broadband frequency up- and down-conversions, phase conjugation and all-optical control and tunability over a surface.

4.
Sensors (Basel) ; 17(8)2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28777291

RESUMEN

The availability of silicon photonic integrated circuits (ICs) in the 2-4 µm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 µm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 µm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.

5.
Opt Express ; 24(8): 8480-90, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137286

RESUMEN

2-µm-wavelength-range silicon-on-insulator (SOI) arrayed waveguide gratings (AWGs) with heterogeneously integrated InP-based type-II quantum well photodetectors are presented. Low insertion loss (2.5-3 dB) and low crosstalk (-30 to -25 dB) AWGs are realized. The InP-based type-II photodetectors are integrated with the AWGs using two different coupling approaches. Adiabatic-taper-based photodetectors show a responsivity of 1.6 A/W at 2.35 µm wavelength and dark current of 10 nA at -0.5 V, while photodetectors using grating-assisted coupling have a responsivity of 0.1 A/W and dark current of 5 nA at -0.5 V. The integration of the photodetector array does not degrade the insertion loss and crosstalk of the device. The photodetector epitaxial stack can also be used to realize the integration of a broadband light source, thereby enabling fully integrated spectroscopic systems.

6.
Opt Express ; 24(18): 21081-9, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27607711

RESUMEN

Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 µm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range.

7.
Opt Lett ; 41(16): 3714-7, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27519070

RESUMEN

Attosecond photoelectron streaking spectroscopy allows time-resolved electron dynamics with a temporal resolution approaching the atomic unit of time. Studies have been performed in numerous systems, including atoms, molecules, and surfaces, and the quest for ever higher temporal resolution called for ever wider spectral extent of the attosecond pulses. For typical experiments relying on attosecond pulses with a duration of 200 as, the time-bandwidth limitation for a Gaussian pulse implies a minimal spectral bandwidth larger than 9 eV translating to a corresponding spread of the detected photoelectron kinetic energies. Here, by utilizing a specially tailored narrowband reflective XUV multilayer mirror, we explore experimentally the minimal spectral width compatible with attosecond time-resolved photoelectron spectroscopy while obtaining the highest possible spectral resolution. The validity of the concept is proven by recording attosecond electron streaking traces from the direct semiconductor gallium arsenide (GaAs), with a nominal bandgap of 1.42 eV at room temperature, proving the potential of the approach for tracking charge dynamics also in these technologically highly relevant materials that previously have been inaccessible to attosecond science.

8.
Opt Express ; 23(20): 26834-41, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26480194

RESUMEN

The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

9.
Adv Sci (Weinh) ; 10(16): e2207520, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029461

RESUMEN

Electrically reconfigurable metasurfaces that overcome the static limitations in controlling the fundamental properties of scattered light are opening new avenues for functional flat optics. This work proposes and experimentally demonstrates electrically phase-tunable mid-infrared metasurfaces based on the polaritonic coupling of Stark-tunable intersubband transitions in semiconductor heterostructures and electromagnetic modes in plasmonic nanoresonators. In the applied voltage range of -3 to +3 V, the local phase tuning of the light reflects from the metasurface, which enables the electrical control of the polarization state and wavefront of the reflected wave. Electrical beam polarization control, electrical beam diffraction control, and electrical beam steering are experimentally demonstrated as applications for local phase tunability. The proposed electrically tunable metasurfaces can easily tune the operating wavelength and function at relatively low voltages, which will enable various applications in the mid-infrared region.

10.
Sci Rep ; 6: 21169, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879901

RESUMEN

Terahertz quantum cascade laser sources based on intra-cavity difference-frequency generation are currently the only room-temperature mass-producible diode-laser-like emitters of coherent 1-6 THz radiation. Device performance has improved dramatically over the past few years to reach milliwatt-level power output and broad tuning from 1.2 to 5.9 THz, all at room-temperature. Terahertz output in these sources originates from intersubband optical nonlinearity in the laser active region. Here we report the first comprehensive spectroscopic study of the optical nonlinearity and investigate its dependence on the mid-infrared pump frequencies. Our work shows that the terahertz generation efficiency can vary by a factor of 2 or greater depending on the spectral position of the mid-infrared pumps for a fixed THz difference-frequency. We have also measured for the first time the linewidth for transitions between the lower quantum cascade laser states, which is critical for determining terahertz nonlinearity and predicting optical loss in quantum cascade laser waveguides.

11.
Nat Commun ; 4: 2021, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23771177

RESUMEN

Room temperature, broadly tunable, electrically pumped semiconductor sources in the terahertz spectral range, similar in operation simplicity to diode lasers, are highly desired for applications. An emerging technology in this area are sources based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers. Here we report terahertz quantum cascade laser sources based on an optimized non-collinear Cherenkov difference-frequency generation scheme that demonstrates dramatic improvements in performance. Devices emitting at 4 THz display a mid-infrared-to-terahertz conversion efficiency in excess of 0.6 mW W(-2) and provide nearly 0.12 mW of peak power output. Devices emitting at 2 and 3 THz fabricated on the same chip display 0.09 and 0.4 mW W(-2) conversion efficiencies at room temperature, respectively. High terahertz-generation efficiency and relaxed phase-matching conditions offered by the Cherenkov scheme allowed us to demonstrate, for the first time, an external-cavity terahertz quantum cascade laser source tunable between 1.70 and 5.25 THz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA