Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Vasc Endovasc Surg ; 57(5): 709-718, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31000458

RESUMEN

OBJECTIVE: Customised aortic repair (CAR) is a new and minimally invasive technique for the endovascular treatment of abdominal aortic aneurysms (AAAs). The aneurysm is completely sealed with a non-contained, non-cross linked polymer, while a new flow lumen is created with balloons. For CAR, the haemodynamically most favourable balloon and flow lumen configuration has not been established before; therefore, four flow parameters were assessed in an in vitro model. METHODS: Three in vitro balloon configurations were implanted in an in vitro AAA model; a configuration with crossing balloons (CC) and two parallel configurations (PC1 and PC2). These three models were consecutively placed in a flow system that mimics physiological flow conditions. Laser particle imaging velocimetry (PIV) was used to resolve spatial and temporal flow patterns during the cardiac cycle. In house built algorithms were used to analyse the PIV data for the computing of (i) flow velocity; (ii) vorticity; (iii) wall shear stress (WSS); and (iv) time averaged wall shear stress (TAWSS). RESULTS: Suprarenal flow patterns were similar in all models. The CC showed a higher infrarenal velocity than PC1 and PC2 (38 cm/s vs. 23 cm/s vs. 23 cm/s), and a higher vorticity at the crossing of the lumens (CC: 337/s; PC1 127/s; PC2: 112/s). The lowest vorticity was observed in PC2, especially in the infrarenal neck (CC: 200/s; PC1 164/s; PC2: 98/s). Although WSS and TAWSS varied between configurations, values were in the within non-pathological range. CONCLUSION: The flow lumens created by three balloon configurations used in an in vitro model of CAR have been studied, and resulted in different haemodynamics. The differences in velocity and lower vorticity, especially at the crossing section of the two balloons, showed that PC2 has favourable haemodynamics compared with the CC and PC1. Future research will be focused on the clinical applicability of CAR based on the PC2 design.


Asunto(s)
Aneurisma de la Aorta Abdominal/fisiopatología , Aneurisma de la Aorta Abdominal/cirugía , Implantación de Prótesis Vascular/métodos , Prótesis Vascular , Algoritmos , Velocidad del Flujo Sanguíneo , Implantación de Prótesis Vascular/instrumentación , Hemodinámica , Humanos , Modelos Cardiovasculares , Diseño de Prótesis , Flujo Sanguíneo Regional , Stents , Estrés Mecánico
2.
J Endovasc Ther ; 25(3): 387-394, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29544371

RESUMEN

PURPOSE: To assess the dynamic behavior of chimney grafts during the cardiac cycle. METHODS: Three chimney endovascular aneurysm repair (EVAR) stent-graft configurations (Endurant and Advanta V12, Endurant and Viabahn, and Endurant and BeGraft) were placed in silicone aneurysm models and subjected to physiologic flow. Electrocardiography (ECG)-gated contrast-enhanced computed tomography was used to visualize geometric changes during the cardiac cycle. Endograft and chimney graft surface, gutter volume, chimney graft angulation over the center lumen line, and the D-ratio (the ratio between the lengths of the major and minor axes) were independently assessed by 2 observers at 10 time points in the cardiac cycle. RESULTS: Both gutter volumes and chimney graft geometry changed significantly during the cardiac cycle in all 3 configurations (p<0.001). Gutters and endoleaks were observed in all configurations. The largest gutter volume (232.8 mm3) and change in volume (20.7 mm3) between systole and diastole were observed in the Endurant-Advanta configuration. These values were 2.7- and 3.0-fold higher, respectively, compared to the Endurant-Viabahn configuration and 1.7- and 1.6-fold higher as observed in the Endurant-BeGraft configuration. The Endurant-Viabahn configuration had the highest D-ratio (right, 1.26-1.35; left, 1.33-1.48), while the Endurant-BeGraft configuration had the lowest (right, 1.11-1.17; left, 1.08-1.15). Assessment of the interobserver variability showed a high correlation (intraclass correlation >0.935) between measurements. CONCLUSION: Gutter volumes and stent compression are dynamic phenomena that reshape during the cardiac cycle. Compelling differences were observed during the cardiac cycle in all configurations, with the self-expanding (Endurant-Viabahn) chimney EVAR configurations having smaller gutters and less variation in gutter volume during the cardiac cycle yet more stent compression without affecting the chimney graft surface.


Asunto(s)
Aneurisma de la Aorta Abdominal/cirugía , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Técnicas de Imagen Sincronizada Cardíacas , Electrocardiografía , Procedimientos Endovasculares/instrumentación , Tomografía Computarizada Multidetector , Stents , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/fisiopatología , Presión Arterial , Ensayo de Materiales , Modelos Anatómicos , Modelos Cardiovasculares , Diseño de Prótesis , Flujo Pulsátil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA