Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276610

RESUMEN

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

2.
Molecules ; 29(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124962

RESUMEN

New heterometallic antenna terephthalate MOFs, namely, (EuxM1-x)2bdc3·4H2O (M = Y, La, Gd) (x = 0.001-1), were synthesized by a one-step method from aqueous solutions. The resulting compounds are isomorphic to each other; the crystalline phase corresponds to Ln2bdc3∙4H2O. Upon 300 nm excitation to the singlet excited state of terephthalate ions, all compounds exhibit a bright red emission corresponding to the of 5D0-7FJ (J = 0-4) f-f transitions of Eu3+ ions. The Eu(III) concentration dependence of the photophysical properties was carefully studied. We revealed that Gd-doping results in photoluminescence enhancement due to the heavy atom effect. To quantitatively compare the antenna effect among different compounds, we proposed the new approach, where the quantum yield of the 5D0 formation is used to characterize the efficiency of energy transfer from the ligand antenna to the Eu3+ emitter.

3.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679606

RESUMEN

Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active corrosion of structural materials takes place; upon increase in oxygen content, slag accumulates due to the formation of lead oxide. The generally accepted method of measuring the oxygen content in LBE is currently potentiometry. The sensors for measuring oxygen activity (electrochemical oxygen sensors) are galvanic cells with two electrodes (lead-bismuth coolant serves as working electrode) separated by a solid electrolyte. Control of corrosion and slag accumulation processes in circuits exploring LBE as a coolant is also based on data obtained by electrochemical oxygen sensors. The disadvantages of this approach are the low efficiency and low sensitivity of control. The alternative, Impedance Spectroscopy (EIS) Sensors, are proposed for Real-Time Corrosion Monitoring in LBE system. Currently their applicability in static LBE at temperatures up to 600 °C is shown.


Asunto(s)
Aleaciones , Bismuto , Corrosión , Aleaciones/química , Oxígeno
4.
Molecules ; 28(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36903620

RESUMEN

Luminescent, heterometallic terbium(III)-lutetium(III) terephthalate metal-organic frameworks (MOFs) were synthesized via direct reaction between aqueous solutions of disodium terephthalate and nitrates of corresponding lanthanides by using two methods: synthesis from diluted and concentrated solutions. For (TbxLu1-x)2bdc3·nH2O MOFs (bdc = 1,4-benzenedicarboxylate) containing more than 30 at. % of Tb3+, only one crystalline phase was formed: Ln2bdc3·4H2O. At lower Tb3+ concentrations, MOFs crystallized as the mixture of Ln2bdc3·4H2O and Ln2bdc3·10H2O (diluted solutions) or Ln2bdc3 (concentrated solutions). All synthesized samples that contained Tb3+ ions demonstrated bright green luminescence upon excitation into the 1ππ* excited state of terephthalate ions. The photoluminescence quantum yields (PLQY) of the compounds corresponding to the Ln2bdc3 crystalline phase were significantly larger than for Ln2bdc3·4H2O and Ln2bdc3·10H2O phases due to absence of quenching from water molecules possessing high-energy O-H vibrational modes. One of the synthesized materials, namely, (Tb0.1Lu0.9)2bdc3·1.4H2O, had one of the highest PLQY among Tb-based MOFs, 95%.

5.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144501

RESUMEN

A new series of luminescent heterometallic europium(III)-lutetium(III) terephthalate metal-organic frameworks, namely (EuxLu1-x)2bdc3·nH2O, was synthesized using a direct reaction in a water solution. At the Eu3+ concentration of 1-40 at %, the MOFs were formed as a binary mixture of the (EuxLu1-x)2bdc3 and (EuxLu1-x)2bdc3·4H2O crystalline phases, where the Ln2bdc3·4H2O crystalline phase was enriched by europium(III) ions. At an Eu3+ concentration of more than 40 at %, only one crystalline phase was formed: (EuxLu1-x)2bdc3·4H2O. All MOFs containing Eu3+ exhibited sensitization of bright Eu3+-centered luminescence upon the 280 nm excitation into a 1ππ* excited state of the terephthalate ion. The fine structure of the emission spectra of Eu3+ 5D0-7FJ (J = 0-4) significantly depended on the Eu3+ concentration. The luminescence quantum yield of Eu3+ was significantly larger for Eu-Lu terephthalates containing a low concentration of Eu3+ due to the absence of Eu-Eu energy migration and the presence of the Ln2bdc3 crystalline phase with a significantly smaller nonradiative decay rate compared to the Ln2bdc3·4H2O.

6.
Materials (Basel) ; 16(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36984038

RESUMEN

The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is formed) have a ß-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape of hexagonal prisms. The type and content of doping REE significantly effect on the particle size. Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum attributed to 4G5/2→6HJ transitions (J = 5/2-11/2) of Sm3+ ion. Increasing the samarium (III) content results in concentration quenching by dipole-dipole interactions, the optimum Sm3+concentration is found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in emission intensity. This effect was explained from the Sm3+ local symmetry point of view.

7.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080009

RESUMEN

Two series of ß-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.

8.
J Phys Chem B ; 125(26): 7213-7221, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34170695

RESUMEN

Ultrafast excited-state dynamics of CuBr3- complex was studied in acetonitrile and dichloromethane solutions using femtosecond transient absorption spectroscopy with 18 fs temporal resolution and quantum-chemical DFT calculations. Upon 640 nm excitation, the CuBr3- complex is promoted to the ligand-to-metal charge transfer (LMCT) state, which then shortly undergoes internal conversion into the vibrationally hot ligand field (LF) excited state with time constants of 30 and 40 fs in acetonitrile and dichloromethane, respectively. The LF state nonradiatively relaxes into the ground state in 2.6 and 7.3 ps in acetonitrile and dichloromethane, respectively. Internal conversion of the LF state is accompanied by vibrational relaxation that occurs on the same time scale. Based on the analysis of coherent oscillations and quantum-chemical calculations, the predominant forms of the CuBr3- complex in acetonitrile and dichloromethane solutions were revealed. In acetonitrile, the CuBr3- complex exists as [CuBr3(CH3CN)2]-, whereas three forms of this complex, [CuBr3CH2Cl2]-, [CuBr3(CH2Cl2)2]-, and [CuBr3(CH2Cl2)3]-, are present in equilibrium in dichloromethane.


Asunto(s)
Vibración , Ligandos , Análisis Espectral
9.
Materials (Basel) ; 14(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34639944

RESUMEN

Comprehensive study of the structure and bonding of disodium, dipotassium and diammonium di-o-phthalatocuprates(II) dihydrates has been undertaken. The crystal structure of ammonium o-phthalatocuprate has been determined. The identity of structures of phthalatocuprate chains in potassium and ammonium salts has been revealed. Vibrational spectra of all three compounds have been recorded, and the assignment of vibrational bands has been made. Force field calculations have shown a minor effect of outer-sphere cations (Na+, K+, NH4+) on both intraligand (C-O) and metal-ligand bond strengths. Synthesized compounds have been tested as electrochemical sensors on D-glucose, dopamine and paracetamol. Their sensitivity to analytes varied in the order of Na+ > K+ > NH4+. This effect has been explained by the more pronounced steric hindrance of copper ions in potassium and ammonium salts.

10.
Nanomaterials (Basel) ; 11(9)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34578764

RESUMEN

The luminescent coarse-, micro- and nanocrystalline europium(III) terephthalate tetrahydrate (Eu2bdc3·4H2O) metal-organic frameworks were synthesized by the ultrasound-assisted wet-chemical method. Electron micrographs show that the europium(III) terephthalate microparticles are 7 µm long leaf-like plates. According to the dynamic light scattering technique, the average size of the Eu2bdc3·4H2O nanoparticles is equal to about 8 ± 2 nm. Thereby, the reported Eu2bdc3·4H2O nanoparticles are the smallest nanosized rare-earth-based MOF crystals, to the best of our knowledge. The synthesized materials demonstrate red emission due to the 5D0-7FJ transitions of Eu3+ upon 250 nm excitation into 1ππ* state of the terephthalate ion. Size reduction results in broadened emission bands, an increase in the non-radiative rate constants and a decrease in both the quantum efficiency of the 5D0 level and Eu3+ and the luminescence quantum yields. Cu2+, Cr3+, and Fe3+ ions efficiently and selectively quench the luminescence of nanocrystalline europium(III) terephthalate, which makes it a prospective material for luminescent probes to monitor these ions in waste and drinking water.

11.
Materials (Basel) ; 13(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751966

RESUMEN

ß-NaYF4 microcrystals co-doped with Yb3+, Er3+/Tm3+, and Gd3+ ions were synthesized via a hydrothermal method using rare-earth chlorides as the precursors. The SEM and XRD data show that the doped ß-NaYF4 form uniform hexagonal prisms with an approximate size of 600-800 nm. The partial substitution of Y by Gd results in size reduction of microcrystals. Upconversion luminescence spectra of microcrystals upon 980 nm excitation contain characteristic intra-configurational ff bands of Er3+/Tm3+ ions. An addition of Gd3+ ions leads to a significant enhancement of upconversion luminescence intensity with maxima at 5 mol % of dopant.

12.
J Phys Chem B ; 124(18): 3724-3733, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283018

RESUMEN

The ultrafast photochemistry of the [Cr(NCS)6]3- complex upon excitation to the 4T2 ligand-field (LF) state was studied in dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) in a wide temporal range (100 fs to 9 ms) by a combination of femtosecond and nanosecond transient absorption spectroscopy techniques and supported by quantum-chemical DFT/TD-DFT calculations. The initially excited 4T2 state undergoes intersystem crossing to the vibrationally hot 2E state with time constants of 1.1 ± 0.2 and 1.8 ± 0.1 ps in DMSO and DMF, respectively. Vibrational relaxation occurs in the same time scale and takes 1-5 ps. A major part of the [Cr(NCS)6]3- complex in the 2E state undergoes intersystem crossing to the ground state with time constants of 65 ± 5 and 85 ± 5 ns in DMSO and DMF, respectively. A minor part of electronically excited [Cr(NCS)6]3- undergoes irreversible photochemical decomposition. In DMSO, the photolysis of the [Cr(NCS)6]3- complex results in single or double isothiocyanate ion release followed by the coordination of the solvent molecules with a time constant of 1 ± 0.2 ms.


Asunto(s)
Dimetilsulfóxido , Dimetilformamida , Electrónica , Ligandos , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA