Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(26): 42807-42821, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178391

RESUMEN

We present an approach for the heterogeneous integration of InP semiconductor optical amplifiers (SOAs) and lasers on an advanced silicon photonics (SiPh) platform by using micro-transfer-printing (µTP). After the introduction of the µTP concept, the focus of this paper shifts to the demonstration of two C-band III-V/Si photonic integrated circuits (PICs) that are important in data-communication networks: an optical switch and a high-speed optical transmitter. First, a C-band lossless and high-speed Si Mach-Zehnder interferometer (MZI) switch is demonstrated by co-integrating a set of InP SOAs with the Si MZI switch. The micro-transfer-printed SOAs provide 10 dB small-signal gain around 1560 nm with a 3 dB bandwidth of 30 nm. Secondly, an integrated transmitter combining an on-chip widely tunable laser and a doped-Si Mach-Zehnder modulator (MZM) is demonstrated. The laser has a continuous tuning range over 40 nm and the transmitter is capable of 40 Gbps non-return-to-zero (NRZ) back-to-back transmission at wavelengths ranging from 1539 to 1573 nm. These demonstrations pave the way for the realization of complex and fully integrated photonic systems-on-chip with integrated III-V-on-Si components, and this technique is transferable to other material films and devices that can be released from their native substrate.

2.
Opt Express ; 27(6): 8395-8413, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31052658

RESUMEN

An advanced transmit remote opto-antenna unit is proposed that accomplishes impedance matching between a photodetector and a low-profile antenna in a specified frequency bandwidth, without requiring an area-consuming matching network. This results in a highly compact design, which also avoids the losses and spurious radiation by such an electrically large matching circuit. Instead, the photodetector is almost directly connected to the antenna, which is designed as a conjugate load, such that the extracted and radiated power are optimized. The required input impedance for the antenna is obtained by adopting a half-mode air-filled substrate-integrated-waveguide topology, which also exhibits excellent radiation efficiency. The proposed unit omits electrical amplifiers and is, therefore, completely driven by the signal supplied by an optical fiber when deployed in an analog optical link, except for an externally supplied photodetector bias voltage. Such a highly cost-effective, power-efficient and reliable unit is an important step in making innovative wireless communication systems, which deploy extremely dense attocells of 15 cm × 15 cm, technically and economically feasible. As a validation, a prototype, operating in the Unlicensed National Information Infrastructure radio bands (5.15 GHz-5.85 GHz), is constructed and its radiation properties are characterized in free-space conditions. After normalizing with respect to the optical source's slope efficiency, a maximum boresight gain of 12.0 dBi and a -3 dB gain bandwidth of 1020 MHz (18.6 %) are observed.

3.
Opt Express ; 26(26): 34763-34775, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30650895

RESUMEN

Next-generation wireless communication will require increasingly faster data links. To achieve those higher data rates, the shift towards mmWave frequencies and smaller cell sizes will play a major role. Radio-over-Fiber has been proposed as a possible architecture to allow for this shift but is nowadays typically implemented digitally, as CPRI (Common Public Radio Interface). Centralization will be important to keep next-generation architectures cost-effective and therefore shared optical amplification at the central office could be preferable. Unfortunately, limited power handling capabilities of photodetectors still hinder the shift towards centralized optical amplification. Traveling wave photodetectors (TWPDs) have been devised to allow for high-linearity, high-speed opto-electronic conversion. In this paper, an architecture is discussed consisting of such a TWPD implemented on the iSiPP25G silicon photonics platform. A monolithically integrated star coupler is added in the design to provide compact power distribution while preserving the high linearity of the TWPD. The traveling wave structure (using 16 photodetectors) has a measured 3 dB bandwidth of 27.5 GHz and a fairly flat S21 up to 50 GHz (less than 1 dB extra loss). Furthermore, the output referred third-order intercept point at 28 GHz, is improved from -1.79 dBm for a single Ge photodiode to 20.98 dBm by adopting the traveling wave design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA