Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 22(1): 18, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650533

RESUMEN

BACKGROUND: Plasmodium vivax malaria is one of the major infectious diseases of public health concern in Nouakchott, the capital city of Mauritania and the biggest urban setting in the Sahara. The assessment of the current trends in malaria epidemiology is primordial in understanding the dynamics of its transmission and developing an effective control strategy. METHODS: A 6 year (2015-2020) prospective study was carried out in Nouakchott. Febrile outpatients with a clinical suspicion of malaria presenting spontaneously at Teyarett Health Centre or the paediatric department of Mother and Children Hospital Centre were screened for malaria using a rapid diagnostic test, microscopic examination of Giemsa-stained blood films, and nested polymerase chain reaction. Data were analysed using Microsoft Excel and GraphPad Prism and InStat software. RESULTS: Of 1760 febrile patients included in this study, 274 (15.5%) were malaria-positive by rapid diagnostic test, 256 (14.5%) were malaria-positive by microscopy, and 291 (16.5%) were malaria-positive by PCR. Plasmodium vivax accounted for 216 of 291 (74.2%) PCR-positive patients; 47 (16.1%) and 28 (9.6%) had P. falciparum monoinfection or P. vivax-P. falciparum mixed infection, respectively. During the study period, the annual prevalence of malaria declined from 29.2% in 2015 to 13.2% in 2019 and 2.1% in 2020 (P < 0.05). Malaria transmission was essentially seasonal, with a peak occurring soon after the rainy season (October-November), and P. vivax infections, but not P. falciparum infections, occurred at low levels during the rest of the year. The most affected subset of patient population was adult male white and black Moors. The decline in malaria prevalence was correlated with decreasing annual rainfall (r = 0.85; P = 0.03) and was also associated with better management of the potable water supply system. A large majority of included patients did not possess or did not use bed nets. CONCLUSIONS: Control interventions based on prevention, diagnosis, and treatment should be reinforced in Nouakchott, and P. vivax-specific control measures, including chloroquine and 8-aminoquinolines (primaquine, tafenoquine) for treatment, should be considered to further improve the efficacy of interventions and aim for malaria elimination.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Adulto , Niño , Femenino , Humanos , Masculino , Fiebre , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Mauritania/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Estudios Prospectivos
2.
Malar J ; 22(1): 147, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37131225

RESUMEN

BACKGROUND: The Republic of Djibouti is a malaria endemic country that was in pre-elimination phase in 2006-2012. From 2013, however, malaria has re-emerged in the country, and its prevalence has been increasing every year. Given the co-circulation of several infectious agents in the country, the assessment of malaria infection based on microscopy or histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDT) has shown its limitations. This study, therefore, aimed to assess the prevalence of malaria among febrile patients in Djibouti city using more robust molecular tools. METHODS: All suspected malaria cases reported to be microscopy-positive were randomly sampled (n = 1113) and included in four health structures in Djibouti city over a 4-year period (2018-2021), mainly during the malaria transmission season (January-May). Socio-demographic information was collected, and RDT was performed in most of the included patients. The diagnosis was confirmed by species-specific nested polymerase chain reaction (PCR). Data were analysed using Fisher's exact test and kappa statistics. RESULTS: In total, 1113 patients with suspected malaria and available blood samples were included. PCR confirmed that 788/1113 (70.8%) were positive for malaria. Among PCR-positive samples, 656 (83.2%) were due to Plasmodium falciparum, 88 (11.2%) Plasmodium vivax, and 44 (5.6%) P. falciparum/P. vivax mixed infections. In 2020, P. falciparum infections were confirmed by PCR in 50% (144/288) of negative RDTs. After the change of RDT in 2021, this percentage decreased to 17%. False negative RDT results were found more frequently (P < 0.05) in four districts of Djibouti city (Balbala, Quartier 7, Quartier 6, and Arhiba). Malaria occurred less frequently in regular bed net users than in non-users (odds ratio [OR]: 0.62, 95% confidence interval [CI]: 0.42-0.92). CONCLUSIONS: The present study confirmed the high prevalence of falciparum malaria and, to a lesser extent, vivax malaria. Nevertheless, 29% of suspected malaria cases were misdiagnosed by microscopy and/or RDT. There is a need to strengthen the capacity for diagnosis by microscopy and to evaluate the possible role of P. falciparum hrp2 gene deletion, which leads to false negative cases of P. falciparum.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Djibouti/epidemiología , Antígenos de Protozoos/genética , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Malaria Vivax/diagnóstico , Malaria Vivax/epidemiología , Plasmodium falciparum/genética , Pruebas Diagnósticas de Rutina/métodos
3.
Malar J ; 19(1): 201, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503540

RESUMEN

BACKGROUND: The Plasmodium falciparum chloroquine transporter gene (pfcrt) is known to be involved in chloroquine and amodiaquine resistance, and more particularly the mutations on the loci 72 to 76 localized within the second exon. Additionally, new mutations (T93S, H97Y, C101F, F145I, M343L, C350R and G353V) were recently shown to be associated with in vitro reduced susceptibility to piperaquine in Asian or South American P. falciparum strains. However, very few data are available on the prevalence of these mutations and their effect on parasite susceptibility to anti-malarial drugs, and more particularly piperaquine in Africa. METHODS: A molecular investigation of these mutations was performed in 602 African P. falciparum parasites collected between 2017 and 2018 on malaria patients hospitalized in France after a travel in African countries. Associations between genotypes and in vitro susceptibilities to piperaquine and standard antimalarial drugs were assessed. RESULTS: None of the mutations, previously described as associated with piperaquine resistance, was found in the 602 P. falciparum African isolates. The K76T mutation is associated with resistance to chloroquine (p < 0.0002) and desethylamodiaquine (p < 0.002) in Africa. The K76T mutation is not associated with in vitro reduced susceptibility to piperaquine. The mutation I356T, identified in 54.7% (n = 326) of the African isolates, was significantly associated with reduced susceptibility to quinine (p < 0.02) and increased susceptibility to mefloquine (p < 0.04). The K76T and I356T mutations were significantly associated in West African isolates (p = 0.008). CONCLUSION: None of the mutations in pfcrt found to be associated with piperaquine reduced susceptibility in Asia or South America (T93S, H97Y, C101F, F145I, M343L C350R and G353V) were found in the 602 African isolates including the three isolates with reduced susceptibility to piperaquine. The K76T mutation, involved in resistance to chloroquine and amodiaquine, and the I356T mutation were not associated with in vitro reduced susceptibility to piperaquine. Differences in mefloquine susceptibility between I356 and 356T isolates were, while statistically different, minimal. Further analyses are needed with a more important sample size from the same geographic area to confirm the role of the I356T mutation on quinine susceptibility.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Quinolinas/uso terapéutico , África , Francia , Humanos , Proteínas de Transporte de Membrana/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Viaje
4.
Malar J ; 19(1): 320, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32883282

RESUMEN

BACKGROUND: Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grande Comore compared to neighbouring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2) and single nucleotide polymorphism (SNP) genetic markers. METHODS: A total of 162 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM). RESULTS: Two allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded interpretable results. Out of these isolates, 36 (85%) were genetically unique and 6 (15%) grouped into two clusters. The genetic diversity of P. falciparum calculated from msp1 and msp2 genes and SNPs was 0.82 and 0.61, respectively. CONCLUSION: In summary, a large genetic diversity of P. falciparum was observed in Grande Comore. This may favour persistence of malaria and might be one of the reasons for the high malaria transmission compared to neighbouring islands. Further surveillance of P. falciparum isolates, mainly through environmental management and vector control, is warranted until complete elimination is attained.


Asunto(s)
Antígenos de Protozoos/genética , Variación Genética , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Proteínas Protozoarias/genética , Comoras , Reacción en Cadena de la Polimerasa
5.
Molecules ; 25(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142770

RESUMEN

In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), emerged in Wuhan, China. Despite containment measures, SARS-CoV-2 spread in Asia, Southern Europe, then in America and currently in Africa. Identifying effective antiviral drugs is urgently needed. An efficient approach to drug discovery is to evaluate whether existing approved drugs can be efficient against SARS-CoV-2. Doxycycline, which is a second-generation tetracycline with broad-spectrum antimicrobial, antimalarial and anti-inflammatory activities, showed in vitro activity on Vero E6 cells infected with a clinically isolated SARS-CoV-2 strain (IHUMI-3) with median effective concentration (EC50) of 4.5 ± 2.9 µM, compatible with oral uptake and intravenous administrations. Doxycycline interacted both on SARS-CoV-2 entry and in replication after virus entry. Besides its in vitro antiviral activity against SARS-CoV-2, doxycycline has anti-inflammatory effects by decreasing the expression of various pro-inflammatory cytokines and could prevent co-infections and superinfections due to broad-spectrum antimicrobial activity. Therefore, doxycycline could be a potential partner of COVID-19 therapies. However, these results must be taken with caution regarding the potential use in SARS-CoV-2-infected patients: it is difficult to translate in vitro study results to actual clinical treatment in patients. In vivo evaluation in animal experimental models is required to confirm the antiviral effects of doxycycline on SARS-CoV-2 and more trials of high-risk patients with moderate to severe COVID-19 infections must be initiated.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Doxiciclina/farmacología , Animales , Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Chlorocebus aethiops , Cloroquina/farmacología , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana , SARS-CoV-2 , Células Vero
6.
Emerg Infect Dis ; 25(2): 273-280, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30666926

RESUMEN

A malaria survey was conducted in Atar, the northernmost oasis city in Mauritania, during 2015-2016. All febrile patients in whom malaria was suspected were screened for malaria by using rapid diagnostic testing and microscopic examination of blood smears and later confirmed by PCR. Of 453 suspected malaria cases, 108 (23.8%) were positive by rapid diagnostic testing, 154 (34.0%) by microscopic examination, and 162 (35.7%) by PCR. Malaria cases were observed throughout the year and among all age groups. Plasmodium vivax was present in 120/162 (74.1%) cases, P. falciparum in 4/162 (2.4%), and mixed P. falciparum-P. vivax in 38/162 (23.4%). Malaria is endemic in northern Mauritania and could be spreading farther north in the Sahara, possibly because of human-driven environmental changes. Further entomologic and parasitologic studies and monitoring are needed to relate these findings to major Anopheles mosquito vectors and to design and implement strategies for malaria prevention and control.


Asunto(s)
Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Genes Mitocondriales , Humanos , Lactante , Malaria/diagnóstico , Malaria/parasitología , Masculino , Mauritania/epidemiología , Persona de Mediana Edad , Plasmodium/genética , Vigilancia de la Población , Prevalencia , Adulto Joven
7.
Malar J ; 18(1): 91, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30902054

RESUMEN

BACKGROUND: In April 2017, Suriname's Ministry of Health alerted French Guiana's Regional Health Agency (RHA) about an increase of imported malaria cases among people coming from an illegal gold mining site called Sophie, in French Guiana, a French overseas territory located in the Amazonian forest. METHODS: Due to safety issues and the remoteness of Sophie, the RHA requested the collaboration of the French Armed Forces for the epidemiological investigation. A medical unit, and six soldiers to ensure the security of the mission, were transported by helicopter. RESULTS: During the investigation, two malaria episodes were diagnosed among 46 persons. Twenty-six of them were from Sophie, where PCR-Plasmodium prevalence was estimated at 60% (15/26). This result was concordant with previous studies revealing high malaria endemicity in the gold miner population. The increase of imported cases in Suriname may have resulted from decreased access to under-the-counter anti-malarials and increased migration of gold miners to Suriname following a decline of the profitability of gold mining in a context of increased repression against illegal mining by the French army. CONCLUSION: This investigation of a suspicious malaria epidemic confirms the importance of malaria among illegal gold miners. Their mobility along the Guiana Shield and their health-seeking behaviour are likely to spread malaria in populations for which significant efforts are undertaken to fight against this disease. Fighting malaria in this population remains more relevant than ever. A pilot study (Malakit project) is currently in progress to evaluate the efficacy of kits for self-diagnosis and self-treatment.


Asunto(s)
Enfermedades Transmisibles Importadas/epidemiología , Epidemias , Malaria/epidemiología , Mineros/estadística & datos numéricos , Vigilancia de la Población/métodos , Adulto , Enfermedades Transmisibles Importadas/parasitología , Femenino , Guyana Francesa/epidemiología , Oro , Humanos , Malaria/parasitología , Masculino , Persona de Mediana Edad , Proyectos Piloto
8.
Malar J ; 17(1): 416, 2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409138

RESUMEN

BACKGROUND: Plasmodium vivax is the predominant malaria species in northern Mauritania. Molecular data on P. vivax isolates circulating in West Africa are scarce. The present study analysed molecular markers associated with resistance to antifolates (Pvdhfr and Pvdhps), chloroquine (Pvmdr1), and artemisinin (Pvk12) in P. vivax isolates collected in two cities located in the Saharan zone of Mauritania. METHODS: Blood samples were obtained from P. vivax-infected patients recruited for chloroquine therapeutic efficacy study in 2013 and febrile patients spontaneously consulting health facilities in Nouakchott and Atar in 2015-2016. Fragments of Pvdhfr (codons 13, 33, 57, 58, 61, 117, and 174), Pvdhps (codons 382, 383, 512, 553, and 585), Pvmdr1 (codons 976 and 1076) and Pvk12 (codon 552) genes were amplified by PCR and sequenced. RESULTS: Most of the isolates in Nouakchott (126/154, 81.8%) and Atar (44/45, 97.8%) carried the wild-type Pvdhfr allelic variant (IPFSTSI). In Nouakchott, all mutants (28/154; 18.2%) had double Pvdhfr mutations in positions 58 and 61 (allelic variant IPFRMSI), whereas in Atar only 1 isolate was mutant (S117N, allelic variant IPFSTNI). The wild-type Pvdhps allelic variant (SAKAV) was found in all tested isolates (Nouakchott, n = 93; Atar, n = 37). Few isolates in Nouakchott (5/115, 4.3%) and Atar (3/79, 3.8%) had the mutant Pvmdr1 allele 976F or 1076L, but not both, including in pre-treatment isolates obtained from patients treated successfully with chloroquine. All isolates (59 in Nouakchott and 48 in Atar) carried the wild-type V552 allele in Pvk12. CONCLUSIONS: Polymorphisms in Pvdhfr, Pvdhps, Pvmdr1, and Pvk12 were limited in P. vivax isolates collected recently in Nouakchott and Atar. Compared to the isolates collected in Nouakchott in 2007-2009, there was no evidence for selection of mutants. The presence of one, but not both, of the two potential markers of chloroquine resistance in Pvmdr1 in pre-treatment isolates did not influence the clinical outcome, putting into question the role of Pvmdr1 mutant alleles 976F and 1076L in treatment failure. Molecular surveillance is an important component of P. vivax malaria control programme in the Saharan zone of Mauritania to predict possible emergence of drug-resistant parasites.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Malaria Vivax/parasitología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Humanos , Malaria Vivax/epidemiología , Mauritania/epidemiología , Análisis de Secuencia de ADN
10.
Malar J ; 16(1): 140, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28381273

RESUMEN

BACKGROUND: A malaria hotspot in the southeastern region of Mauritania, near the Malian border, may hamper malaria control strategies. The objectives were to estimate the prevalence of genetic polymorphisms associated with drug resistance in Plasmodium falciparum isolates and establish baseline data. METHODS: The study was conducted in two malaria-endemic areas in Hodh Elgharbi, situated in the Malian-Mauritanian border area. Blood samples were collected from symptomatic patients. Single nucleotide polymorphisms in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps were genotyped using PCR-restriction fragment length polymorphism, DNA sequencing and primer extension. The Pfmdr1 gene copy number was determined by real-time PCR. RESULTS: Of 280 P. falciparum-infected patients, 193 (68.9%) carried the Pfcrt 76T mutant allele. The Pfmdr1 86Y and 184F mutations were found in 61 (23.1%) of 264 isolates and 167 (67.6%) of 247 samples that were successfully genotyped, respectively. Pfmdr1 mutant alleles 1034C, 1042D and 1246Y were rarely observed. Of 102 P. falciparum isolates analysed, ten (9.8%) had more than one copy of Pfmdr1 gene. The prevalence of isolates harbouring at least triple mutant Pfdhfr 51I, 59R, 108 N/T was 42% (112/268), of which 42 (37.5%) had an additional Pfdhps 437G mutation. The Pfdhps 540E mutation was observed in four isolates (1.5%), including three associated with Pfdhfr triple mutant. Only two quintuple mutants (Pfdhfr-51I-59R-108N Pfdhps-437G-540E) were observed. CONCLUSIONS: The observed mutations in Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt may jeopardize the future of seasonal malaria chemoprevention based on amodiaquine-sulfadoxine-pyrimethamine, intermittent preventive treatment for pregnant women using sulfadoxine-pyrimethamine, and treatment with artesunate-amodiaquine. Complementary studies should be carried out to document the distribution, origin and circulation of P. falciparum populations in this region and more widely in the country to assess the risk of the spread of resistance.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Genes Protozoarios , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Enfermedades Asintomáticas , ADN Protozoario/química , ADN Protozoario/genética , Dosificación de Gen , Humanos , Malí , Mauritania , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Prevalencia , Análisis de Secuencia de ADN
11.
Emerg Infect Dis ; 22(5): 903-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27089004

RESUMEN

To assess the prevalence of malaria among illegal gold miners in the French Guiana rainforest, we screened 205 miners during May-June 2014. Malaria prevalence was 48.3%; 48.5% of cases were asymptomatic. Patients reported self-medication with artemisinin-based combination therapy. Risk for emergence and spread of artemisinin resistance among gold miners in the rainforest is high.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Oro , Malaria/epidemiología , Malaria/parasitología , Mineros , Adulto , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Femenino , Guyana Francesa/epidemiología , Geografía , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Prevalencia , Riesgo , Adulto Joven
12.
Malar J ; 15: 204, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27068219

RESUMEN

BACKGROUND: Malaria epidemiology in Mauritania has been characterized on the basis of epidemiological strata, defined by climatic and geographic features, which divide the country into three zones: Sahelian zone, Sahelo-Saharan transition zone, and Saharan zone. The association between geographic stratification and malaria transmission was assessed through a series of parasitological and entomological surveys. METHODS: Surveys were conducted during the 'cool' dry season in 2011, 'hot' dry season in 2012, and rainy season in 2013 in a total of 12 sentinel sites. Finger-prick capillary blood samples were collected from children aged 2-9 years old in randomly selected households for microscopic examination and rapid diagnostic test for malaria. Adult mosquitoes were sampled by pyrethrum spray catch and CDC light traps and identified using morphological keys and molecular tools. RESULTS: Of 3445 children included, 143 (4.15 %) were infected with malaria parasites including Plasmodium falciparum (n = 71, 2.06 %), Plasmodium vivax (57, 1.65 %), P. falciparum-P. vivax (2, 0.06 %), Plasmodium ovale (12, 0.35 %), and Plasmodium malariae (1, 0.03 %). A large majority of P. falciparum infections were observed in the Sahelo-Saharan zone. Malaria prevalence (P < 0.01) and parasite density (P < 0.001) were higher during the rainy season (2013), compared to cool dry season (2011). Plasmodium vivax was mainly observed in the Saharan region [43 of 59 (73 %) P. vivax infections], mostly in Nouakchott districts, with no significant seasonal variation. Of 3577 mosquitoes captured, 1014 (28.3 %) belonged to Anopheles spp. Anopheles gambiae was the predominant species in all three epidemiological strata during the 'cool' dry season in 2011 but was absent in all study sites, except for Teyarett district in Nouakchott, during the 'hot' dry season in 2012. During the rainy season in 2013, An. gambiae, Anopheles arabiensis, Anopheles pharoensis, and Anopheles rufipes were abundant in different zones. CONCLUSIONS: The results of the present study support the stratification of malaria in Mauritania. However, the Sahelian zone had the lowest malaria prevalence, while the Sahelo-Saharan zone had the highest malaria burden. Local changes due to anthropogenic factors (i.e., human migration, urbanization, malaria interventions) should be considered in order to optimize the control strategy.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Malaria/epidemiología , Malaria/transmisión , Plasmodium/aislamiento & purificación , Distribución Animal , Animales , Niño , Preescolar , Clima , Ambiente , Femenino , Humanos , Malaria/parasitología , Masculino , Mauritania/epidemiología , Densidad de Población , Prevalencia , Estaciones del Año
13.
Malar J ; 15: 16, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743431

RESUMEN

BACKGROUND: In the Republic of Congo, previous epidemiological studies have only been conducted in the south of the country where it is most accessible. Nationally representative data on the efficacy of new anti-malarial tools are lacking in the country. As an initial step to close the gap, clinical efficacy of two artemisinin-based combinations, artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL), was assessed in Owando, a city in equatorial flooded forest in northern Republic of Congo. METHODS: Under 12 years old febrile children attending public health facilities were screened for malaria parasites using lactate dehydrogenase (LDH)-based rapid diagnostic test (RDT) for malaria and microscopic examination of thick blood films. Patients with at least 1,000 asexual Plasmodium falciparum parasites/µl of blood were clinically examined, included after informed consent, and followed up for 28 days, according to the 2009 World Health Organization protocol. Patients were randomly assigned to co-formulated ASAQ (Coarsucam(®)) or AL (Coartem(®)) treatment groups. Plasmodium falciparum recrudescent isolates were compared to pre-treatment isolates by polymerase chain reaction (PCR) using msp1, msp2, and glurp genes to distinguish between re-infection and recrudescence. RESULTS: Between November 2012 and February 2013, 857 under 12 years old febrile children were screened, of whom 198 (23.1%) had positive RDT and 167 (19.5%) positive thick films. ASAQ and AL efficacies were 92.7 and 94.2% before PCR correction, respectively. After genotyping, the overall efficacy was 100% for ASAQ and 98.0% for AL. CONCLUSION: The data reported here represent partially the burden of malaria in 0-11 years old febrile children examined in public health centres of Owando city and serve as reference for further studies. Both artemisinin-based combinations were highly efficacious in patients under 12 years old with acute uncomplicated malaria. ASAQ was associated with more adverse events, which may reduce compliance in unsupervised treatment. TRIAL REGISTRATION: ACTRN12612000940875.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Niño , Preescolar , Congo , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Reacción en Cadena de la Polimerasa
14.
Proc Natl Acad Sci U S A ; 109(2): 511-6, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22203975

RESUMEN

The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.


Asunto(s)
Demografía , Emigración e Inmigración , Variación Genética , Filogenia , Plasmodium falciparum/genética , Teorema de Bayes , Análisis por Conglomerados , Genética de Población , Humanos , Modelos Logísticos , Repeticiones de Microsatélite/genética , Modelos Genéticos , Filogeografía , Plasmodium falciparum/clasificación , Polimorfismo de Nucleótido Simple/genética , Análisis de Componente Principal , América del Sur
15.
Malar J ; 13: 26, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24456636

RESUMEN

BACKGROUND: The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Mauritania. The present study examined and compared the genetic diversity of P. falciparum isolates in Mauritania. METHODS: Plasmodium falciparum isolates blood samples were collected from 113 patients attending health facilities in Nouakchott and Hodh El Gharbi regions. K1, Mad20 and RO33 allelic family of msp-1 gene were determined by nested PCR amplification. RESULTS: K1 family was the predominant allelic type carried alone or in association with Ro33 and Mad20 types (90%; 102/113). Out of the 113 P. falciparum samples, 93(82.3%) harboured more than one parasite genotype. The overall multiplicity of infection was 3.2 genotypes per infection. There was no significant correlation between multiplicity of infection and age of patients. A significant increase of multiplicity of infection was correlated with parasite densities. CONCLUSIONS: The polymorphism of P. falciparum populations from Mauritania was high. Infection with multiple P. falciparum clones was observed, as well as a high multiplicity of infection reflecting both the high endemicity level and malaria transmission in Mauritania.


Asunto(s)
Malaria Falciparum/parasitología , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Adolescente , Adulto , Niño , Preescolar , Femenino , Genotipo , Humanos , Masculino , Mauritania , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Adulto Joven
16.
Diagnostics (Basel) ; 14(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337778

RESUMEN

Until 2020, Djiboutian health authorities relied on histidine-rich protein-2 (HRP2)-based rapid diagnostic tests (RDTs) to establish the diagnosis of Plasmodium falciparum. The rapid spread of P. falciparum histidine-rich protein-2 and -3 (pfhrp2/3) gene-deleted parasite strains in Djibouti has led the authorities to switch from HRP2-based RDTs to lactate dehydrogenase (LDH)-based RDTs targeting the plasmodial lactate dehydrogenase (pLDH) specific for P. falciparum and P. vivax (RapiGEN BIOCREDIT Malaria Ag Pf/Pv pLDH/pLDH) in 2021. This study was conducted with the primary objective of evaluating the diagnostic performance of this alternative RDT. Operational constraints related, in particular, to the implementation of this RDT during the COVID-19 pandemic were also considered. The performance of BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT was also compared to our previously published data on the performance of two HRP2-based RDTs deployed in Djibouti in 2018-2020. The diagnosis of 350 febrile patients with suspected malaria in Djibouti city was established using two batches of RapiGEN BIOCREDIT Malaria Ag Pf/Pv (pLDH/pLDH) RDT over a two-year period (2022 and 2023) and confirmed by real-time quantitative polymerase chain reaction. The sensitivity and specificity for the detection of P. falciparum were 88.2% and 100%, respectively. For P. vivax, the sensitivity was 86.7% and the specificity was 100%. Re-training and closer supervision of the technicians between 2022 and 2023 have led to an increased sensitivity to detect P. falciparum (69.8% in 2022 versus 88.2% in 2023; p < 0.01). The receiver operating characteristic curve analysis highlighted a better performance in the diagnosis of P. falciparum with pLDH-based RDTs compared with previous HRP2-based RDTs. In Djibouti, where pfhrp2-deleted strains are rapidly gaining ground, LDH-based RDTs seem to be more suitable for diagnosing P. falciparum than HRP2-based RDTs. Awareness-raising and training for technical staff have also been beneficial.

17.
Malar J ; 12: 189, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23758769

RESUMEN

BACKGROUND: Although the World Health Organization recommends replacing quinine (QN) by artesunate due to its increased efficacy and the higher tolerance to the drug in both adults and children, QN remains a first-line treatment for severe malaria, especially in Africa. Investigations of microsatellite Pfnhe-1 ms4760 polymorphisms in culture-adapted isolates from around the world have revealed that an increase in the number of DNNND amino acid motifs was associated with decreased QN susceptibility, whereas an increase in the number of DDNHNDNHNND motifs was associated with increased QN susceptibility. METHODS: In this context, to further analyse associations between Pfnhe-1 ms4760 polymorphisms and QN susceptibility, 393 isolates freshly collected between October 2009 and January 2010 and July 2010 and February 2011, respectively, at the Hôpital Principal de Dakar, Senegal were assessed ex vivo for QN susceptibility, and their genes were amplified and sequenced. RESULTS: Of the 393 Plasmodium falciparum clinical isolates collected, 145 were successfully cultured. The 145 QN IC50s ranged from 2.1 to 1291 nM, and 17 isolates (11.7%) exceed the QN reduced susceptibility threshold of 611 nM. Among the 393 P. falciparum clinical isolates, 47 different alleles were observed. The three most prevalent profiles were ms4760-1 (no = 72; 18.3%), ms4760-3 (no = 65; 16.5%) and ms4760-7 (no = 40; 10.2%). There were no significant associations observed between QN IC50 values and i) the number of repeats of DNNND in block II (p = 0.0955, Kruskal-Wallis test); ii) the number of repeats of DDNHNDNHNND in block V (p = 0.1455, Kruskal-Wallis test); or iii) ms4760 profiles (p = 0.1809, Kruskal-Wallis test). CONCLUSIONS: Pfnhe-1 ms4760 was highly diverse in parasite isolates from Dakar (47 different profiles). Three profiles (ms4760-1, ms4760-3 and ms4760-7) were predominant. The number of repeats for block II (DNNND) or block V (DDNHNDNHNND) was not significantly associated with QN susceptibility. New studies, and especially in vivo studies, are necessary to confirm the role of Pfnhe-1 ms4760 as a marker of QN resistance.


Asunto(s)
Antimaláricos/farmacología , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo Genético , Quinina/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Adulto , Niño , Preescolar , ADN Protozoario/química , ADN Protozoario/genética , Genotipo , Humanos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética , Senegal , Análisis de Secuencia de ADN
18.
Malar J ; 12: 201, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23758989

RESUMEN

BACKGROUND: Case management of imported malaria within the context of malaria pre-elimination is increasingly considered to be relevant because of the risk of resurgence. The assessment of malaria importation would provide key data i) to select countries with propitious conditions for pre-elimination phase and ii) to predict its feasibility. Recently, a sero-prevalence study in Djibouti indicated low malaria prevalence, which is propitious for the implementation of pre-elimination, but data on the extent of malaria importation remain unknown. METHODS: Djiboutian plasmodial populations were analysed over an eleven-year period (1998, 1999, 2002 and 2009). The risk of malaria importation was indirectly assessed by using plasmodial population parameters. Based on 5 microsatellite markers, expected heterozygosity (H.e.), multiplicity of infection, pairwise Fst index, multiple correspondence analysis and individual genetic relationship were determined. The prevalence of single nucleotide polymorphisms associated with pyrimethamine resistance was also determined. RESULTS: Data indicated a significant decline in genetic diversity (0.51, 0.59, 0.51 and 0 in 1998, 1999, 2002 and 2009, respectively) over the study period, which is inconsistent with the level of malaria importation described in a previous study. This suggested that Djiboutian malaria situation may have benefited from the decline of malaria prevalence that occurred in neighbouring countries, in particular in Ethiopia. The high Fst indices derived from plasmodial populations from one study period to another (0.12 between 1999 and 2002, and 0.43 between 2002 and 2009) suggested a random sampling of parasites, probably imported from neighbouring countries, leading to oligo-clonal expansion of few different strains during each transmission season. Nevertheless, similar genotypes observed during the study period suggested recurrent migrations and imported malaria. CONCLUSION: In the present study, the extent of genetic diversity was used to assess the risk of malaria importation in the low malaria transmission setting of Djibouti. The molecular approach highlights i) the evolution of Djiboutian plasmodial population profiles that are consistent and compatible with Djiboutian pre-elimination goals and ii) the necessity to implement the monitoring of plasmodial populations and interventions at the regional scale in the Horn of Africa to ensure higher efficiency of malaria control and elimination.


Asunto(s)
Erradicación de la Enfermedad , Variación Genética , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Antimaláricos/farmacología , ADN Protozoario/genética , Djibouti , Resistencia a Medicamentos , Genotipo , Humanos , Repeticiones de Microsatélite , Epidemiología Molecular , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/aislamiento & purificación , Pirimetamina/farmacología
19.
Genes (Basel) ; 14(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980953

RESUMEN

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic has fostered the use of high-throughput techniques to sequence the entire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome and track its evolution. The present study proposes a rapid and relatively less expensive sequencing protocol for 384 samples by adapting the use of an Illumina NovaSeq library to an Illumina MiSeq flow cell instrument. The SARS-CoV-2 genome sequences obtained with Illumina NovaSeq and those obtained using MiSeq instruments were compared with the objective to validate the new, modified protocol. A total of 356 (94.6%) samples yielded interpretable sequences using the modified Illumina COVIDSeq protocol, with an average coverage of 91.6%. By comparison, 357 (94.9%) samples yielded interpretable sequences with the standard COVIDSeq protocol, with an average coverage of 95.6%. Our modified COVIDSeq protocol could save 14,155 euros per run and yield results from 384 samples in 53.5 h, compared to four times 55.5 h with the standard Illumina MiSeq protocol. The modified COVIDSeq protocol thus provides high quality results comparable to those obtained with the standard COVIDSeq protocol, four times faster, while saving money.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Secuenciación Completa del Genoma/métodos , Biblioteca de Genes , Genoma Viral
20.
Antimicrob Agents Chemother ; 56(5): 2750-2, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22314533

RESUMEN

Screening for in vitro susceptibility to pyrimethamine and sequencing of the pfmdr2 and pfdhfr genes were performed in 140 Plasmodium falciparum isolates. The risk of in vitro resistance to pyrimethamine was analyzed with a logistic regression model. The mutation F423Y in pfmdr2 (odds ratio [OR] = 2.12 [confidence interval {CI}, 1.02 to 4.59]; P = 0.0489) and the mutation N51I, C59R, or S108N in pfdhfr (OR = 42.34 [CI, 5.52 to 324.61]; P = 0.0003) were independently associated with in vitro resistance to pyrimethamine.


Asunto(s)
Resistencia a Medicamentos/genética , Antagonistas del Ácido Fólico/farmacología , Genes Protozoarios , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Pirimetamina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Antimaláricos/farmacología , Humanos , Modelos Logísticos , Malaria Falciparum/parasitología , Análisis Multivariante , Mutación , Plasmodium falciparum/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA