Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genesis ; 58(2): e23344, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31705622

RESUMEN

Mucus secretion and ciliary motility are hallmarks for muco-ciliary epithelia (MCE). Both, mammalian airways as well as the less complex epidermis of Xenopus embryos show cilia-driven mucus flow to protect the organism against harmful effects by exogenous pathogens or pollutants. Four cell types set up the epidermal MCE in Xenopus. Multi-ciliated cells (MCCs) generate an anterior to posterior flow of mucus. Ion secreting cells (ISCs) are characterized by the expression of ion transporters, presumably to maintain a favorable homeostasis. The largest cell type is represented by goblet cells, which cover most of the epidermis and exhibit secretory properties. Additionally, small secretory cells (SSCs) release mucus, antibiotic compounds, and the monoamine serotonin (5-hydroxytryptamine; 5-HT). We have recently shown that serotonin regulates flow velocity by acting on ciliary beat frequency. Here, we describe the identification and functional characterization of Xenopus polka-dots (Xpod). No homologous genes or proteins were found in other vertebrates, including Xenopus tropicalis. We demonstrate that Xpod serves as an SSC-specific marker, starting to be expressed shortly after SSC specification at neurula stages. Overexpression of a tagged Xpod protein resulted in the localization of secretory granules. Notch signaling induced SSC cell fate, in contrast to its repressing effect on MCC and ISC specification. Xpod loss-of-function revealed that mucus and 5-HT release by SSCs was severely diminished, which impaired the ciliary beating of MCCs. In summary, Xpod specifically marked SSCs and was required for muco-ciliary secretion in Xenopus laevis.


Asunto(s)
Moco/metabolismo , Vesículas Secretoras/metabolismo , Serotonina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Cilios/metabolismo , Cilios/ultraestructura , Células Epiteliales/metabolismo , Neurulación , Receptores Notch/metabolismo , Xenopus , Proteínas de Xenopus/genética
2.
Development ; 141(7): 1526-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598162

RESUMEN

The embryonic skin of Xenopus tadpoles serves as an experimental model system for mucociliary epithelia (MCE) such as the human airway epithelium. MCEs are characterized by the presence of mucus-secreting goblet and multiciliated cells (MCCs). A third cell type, ion-secreting cells (ISCs), is present in the larval skin as well. Synchronized beating of MCC cilia is required for directional transport of mucus. Here we describe a novel cell type in the Xenopus laevis larval epidermis, characterized by serotonin synthesis and secretion. It is termed small secretory cell (SSC). SSCs are detectable at early tadpole stages, unlike MCCs and ISCs, which are specified at early neurulation. Subcellularly, serotonin was found in large, apically localized vesicle-like structures, which were entirely shed into the surrounding medium. Pharmacological inhibition of serotonin synthesis decreased the velocity of cilia-driven fluid flow across the skin epithelium. This effect was mediated by serotonin type 3 receptor (Htr3), which was expressed in ciliated cells. Knockdown of Htr3 compromised flow velocity by reducing the ciliary motility of MCCs. SSCs thus represent a distinct and novel entity of the frog tadpole MCE, required for ciliary beating and mucus transport across the larval skin. The identification and characterization of SSCs consolidates the value of the Xenopus embryonic skin as a model system for human MCEs, which have been known for serotonin-dependent regulation of ciliary beat frequency.


Asunto(s)
Cilios/fisiología , Células Epidérmicas , Epidermis/metabolismo , Serotonina/metabolismo , Xenopus/crecimiento & desarrollo , Animales , Separación Celular , Embrión no Mamífero , Epidermis/embriología , Epidermis/crecimiento & desarrollo , Iones/metabolismo , Larva , Movimiento/fisiología , Moco/metabolismo , Receptores de Serotonina/fisiología
3.
Curr Biol ; 17(1): 60-6, 2007 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-17208188

RESUMEN

Determination of the vertebrate left-right body axis during embryogenesis results in asymmetric development and placement of most inner organs. Although the asymmetric Nodal cascade is conserved in all vertebrates, the mechanism of symmetry breakage has remained controversial. In mammalian and fish embryos, a cilia-driven leftward flow of extracellular fluid is required for initiation of the Nodal cascade. This flow is localized at the posterior notochord ("node") and Kupffer's vesicle, respectively. In frog and chick embryos, however, molecular asymmetries are required earlier, from cleavage stages through gastrulation. The validity of a cilia-based mechanism for all vertebrates therefore has been questioned. Here we show that a cilia-driven leftward flow precedes asymmetric nodal expression in the frog Xenopus. Motile monocilia emerged on the gastrocoel roof plate during neurulation and lengthened and polarized from an initially central position to the posterior pole of cells. Concomitantly, a robust leftward fluid flow developed from stage 15 onward, significantly before asymmetric nodal transcription started in the left-lateral-plate mesoderm at stage 19. Injection of 1.5% methylcellulose into the archenteron prevented leftward flow and resulted in laterality defects, demonstrating that the flow itself was required for asymmetric gene expression and organ placement.


Asunto(s)
Cilios/fisiología , Desarrollo Embrionario/fisiología , Gástrula/fisiología , Xenopus/embriología , Animales , Mesodermo/fisiología , Reología
4.
Curr Biol ; 22(1): 33-9, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22177902

RESUMEN

In vertebrates, most inner organs are asymmetrically arranged with respect to the main body axis [1]. Symmetry breakage in fish, amphibian, and mammalian embryos depends on cilia-driven leftward flow of extracellular fluid during neurulation [2-5]. Flow induces the asymmetric nodal cascade that governs asymmetric organ morphogenesis and placement [1, 6, 7]. In the frog Xenopus, an alternative laterality-generating mechanism involving asymmetric localization of serotonin at the 32-cell stage has been proposed [8]. However, no functional linkage between this early localization and flow at neurula stage has emerged. Here, we report that serotonin signaling is required for specification of the superficial mesoderm (SM), which gives rise to the ciliated gastrocoel roof plate (GRP) where flow occurs [5, 9]. Flow and asymmetry were lost in embryos in which serotonin signaling was downregulated. Serotonin, which we found uniformly distributed along the main body axes in the early embryo, was required for Wnt signaling, which provides the instructive signal to specify the GRP. Importantly, serotonin was required for Wnt-induced double-axis formation as well. Our data confirm flow as primary mechanism of symmetry breakage and suggest a general role of serotonin as competence factor for Wnt signaling during axis formation in Xenopus.


Asunto(s)
Tipificación del Cuerpo , Serotonina/metabolismo , Xenopus/embriología , Xenopus/metabolismo , Animales , Blástula/metabolismo , Embrión no Mamífero/metabolismo , Mesodermo/metabolismo , Transducción de Señal , Vía de Señalización Wnt , Proteínas de Xenopus/metabolismo
5.
Differentiation ; 75(2): 133-46, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17316383

RESUMEN

The mammalian node, the functional equivalent of the frog dorsal blastoporal lip (Spemann's organizer), was originally described by Viktor Hensen in 1876 in the rabbit embryo as a mass of cells at the anterior end of the primitive streak. Today, the term "node" is commonly used to describe a bilaminar epithelial groove presenting itself as an indentation or "pit" at the distal tip of the mouse egg cylinder, and cilia on its ventral side are held responsible for molecular laterality (left-right) determination. We find that Hensen's node in the rabbit is devoid of cilia, and that ciliated cells are restricted to the notochordal plate, which emerges from the node rostrally. In a comparative approach, we use the organizer marker gene Goosecoid (Gsc) to show that a region of densely packed epithelium-like cells at the anterior end of the primitive streak represents the node in mouse and rabbit and is covered ventrally by a hypoblast (termed "visceral endoderm" in the mouse). Expression of Nodal, a gene intricately involved in the determination of vertebrate laterality, delineates the wide plate-like posterior segment of the notochord in the rabbit and mouse, which in the latter is represented by the indentation frequently termed "the node." Similarly characteristic ciliation and nodal expression exists in Xenopus neurula embryos in the gastrocoel roof plate (GRP), i.e., at the posterior end of the notochord anterior to the blastoporal lip. Our data suggest that (1) a posterior segment of the notochord, here termed PNC (for posterior notochord), is characterized by features known to be involved in laterality determination, (2) the GRP in Xenopus is equivalent to the mammalian PNC, and (3) the mammalian node as defined by organizer gene expression is devoid of cilia and most likely not directly involved in laterality determination.


Asunto(s)
Cilios/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Proteína Goosecoide/genética , Notocorda/embriología , Factor de Crecimiento Transformador beta/genética , Animales , Cilios/metabolismo , Estructuras Embrionarias/ultraestructura , Femenino , Gástrula/metabolismo , Proteína Goosecoide/metabolismo , Hibridación in Situ , Ratones , Proteína Nodal , Notocorda/metabolismo , Notocorda/ultraestructura , Conejos , Factor de Crecimiento Transformador beta/metabolismo , Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA