Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(3): 622-638.e22, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31002797

RESUMEN

DNA repair has been hypothesized to be a longevity determinant, but the evidence for it is based largely on accelerated aging phenotypes of DNA repair mutants. Here, using a panel of 18 rodent species with diverse lifespans, we show that more robust DNA double-strand break (DSB) repair, but not nucleotide excision repair (NER), coevolves with longevity. Evolution of NER, unlike DSB, is shaped primarily by sunlight exposure. We further show that the capacity of the SIRT6 protein to promote DSB repair accounts for a major part of the variation in DSB repair efficacy between short- and long-lived species. We dissected the molecular differences between a weak (mouse) and a strong (beaver) SIRT6 protein and identified five amino acid residues that are fully responsible for their differential activities. Our findings demonstrate that DSB repair and SIRT6 have been optimized during the evolution of longevity, which provides new targets for anti-aging interventions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Longevidad/genética , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Roturas del ADN de Doble Cadena/efectos de la radiación , Evolución Molecular , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Humanos , Cinética , Masculino , Mutagénesis , Filogenia , Roedores/clasificación , Alineación de Secuencia , Sirtuinas/química , Sirtuinas/genética , Rayos Ultravioleta
3.
Bioessays ; 40(5): e1800007, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29603290

RESUMEN

BET proteins such as Brd3 and Brd4 are chromatin-associated factors, which control gene expression programs that promote inflammation and cancer. The Nrf2 transcription factor is a master regulator of genes that protect the organism against xenobiotic attack and oxidative stress. Nrf2 has demonstrated anti-inflammatory activity and can support cancer cell malignancy. This review describes the discovery, mechanism and biomedical implications of the regulatory interplay between Nrf2 and BET proteins. Both Nrf2 and BET proteins are established drug targets. Small molecules that either activate or suppress these proteins are currently tested in clinical trials. The crosstalk between Nrf2 and BET proteins may have important, and until now overlooked, implications for the therapeutic effects of these drugs. Based on the information covered in this review, it should be possible to design combinatorial treatment strategies for cancer and inflammatory diseases, which may improve the efficacy of targeting a Nrf2 or BET proteins individually.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/fisiología , Animales , Humanos , Inflamación/genética , Inflamación/metabolismo , Factor 2 Relacionado con NF-E2/genética , Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Estrés Oxidativo/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
PLoS Genet ; 12(5): e1006072, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27233051

RESUMEN

Mammalian BET proteins comprise a family of bromodomain-containing epigenetic regulators with complex functions in chromatin organization and gene regulation. We identified the sole member of the BET protein family in Drosophila, Fs(1)h, as an inhibitor of the stress responsive transcription factor CncC, the fly ortholog of Nrf2. Fs(1)h physically interacts with CncC in a manner that requires the function of its bromodomains and the acetylation of CncC. Treatment of cultured Drosophila cells or adult flies with fs(1)h RNAi or with the BET protein inhibitor JQ1 de-represses CncC transcriptional activity and engages protective gene expression programs. The mechanism by which Fs(1)h inhibits CncC function is distinct from the canonical mechanism that stimulates Nrf2 function by abrogating Keap1-dependent proteasomal degradation. Consistent with the independent modes of CncC regulation by Keap1 and Fs(1)h, combinations of drugs that can specifically target these pathways cause a strong synergistic and specific activation of protective CncC- dependent gene expression and boosts oxidative stress resistance. This synergism might be exploitable for the design of combinatorial therapies to target diseases associated with oxidative stress or inflammation.


Asunto(s)
Proteínas de Drosophila/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Estrés Oxidativo/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Acetilación , Animales , Azepinas/administración & dosificación , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteolisis/efectos de los fármacos , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Triazoles/administración & dosificación
5.
FASEB J ; 31(6): 2327-2339, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28213359

RESUMEN

The eyes absent (EYA) family proteins are conserved transcriptional coactivators with intrinsic protein phosphatase activity. They play an essential role in the development of various organs in metazoans. These functions are associated with a unique combination of phosphatase and transactivation activities. However, it remains poorly understood how these activities and the consequent biologic functions of EYA are regulated. Here, we demonstrate that 2 conserved arginine residues, R304 and R306, of EYA1 are essential for its in vitro phosphatase activity and in vivo function during Drosophila eye development. EYA1 physically interacts with protein arginine methyltransferase 1, which methylates EYA1 at these residues both in vitro and in cultured mammalian and insect cells. Moreover, we show that wild-type, but not methylation-defective, EYA1 associates with γ-H2A.X in response to ionizing radiation. Taken together, our results identify the conserved arginine residues of EYA1 that play an important role for its activity, thus implicating arginine methylation as a novel regulatory mechanism of EYA function.-Li, X., Eberhardt, A., Hansen, J. N., Bohmann, D., Li, H., Schor, N. F. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Metilación , Mutación , Proteínas Nucleares/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteína-Arginina N-Metiltransferasas/genética
6.
FASEB J ; 27(6): 2407-20, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23457214

RESUMEN

Proteasome is central to proteostasis maintenance, as it degrades both normal and damaged proteins. Herein, we undertook a detailed analysis of proteasome regulation in the in vivo setting of Drosophila melanogaster. We report that a major hallmark of somatic tissues of aging flies is the gradual accumulation of ubiquitinated and carbonylated proteins; these effects correlated with a ~50% reduction of proteasome expression and catalytic activities. In contrast, gonads of aging flies were relatively free of proteome oxidative damage and maintained substantial proteasome expression levels and highly active proteasomes. Moreover, gonads of young flies were found to possess more abundant and more active proteasomes than somatic tissues. Exposure of flies to oxidants induced higher proteasome activities specifically in the gonads, which were, independently of age, more resistant than soma to oxidative challenge and, as analyses in reporter transgenic flies showed, retained functional antioxidant responses. Finally, inducible Nrf2 activation in transgenic flies promoted youthful proteasome expression levels in the aged soma, suggesting that age-dependent Nrf2 dysfunction is causative of decreasing somatic proteasome expression during aging. The higher investment in proteostasis maintenance in the gonads plausibly facilitates proteome stability across generations; it also provides evidence in support of the trade-off theories of aging.


Asunto(s)
Envejecimiento/metabolismo , Drosophila melanogaster/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Envejecimiento/genética , Animales , Animales Modificados Genéticamente , Elementos de Respuesta Antioxidante/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ovario/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Testículo/metabolismo , Distribución Tisular/genética
7.
Dev Cell ; 14(1): 76-85, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18194654

RESUMEN

Keap1/Nrf2 signaling defends organisms against the detrimental effects of oxidative stress and has been suggested to abate its consequences, including aging-associated diseases like neurodegeneration, chronic inflammation, and cancer. Nrf2 is a prominent target for drug discovery, and Nrf2-activating agents are in clinical trials for cancer chemoprevention. However, aberrant activation of Nrf2 by keap1 somatic mutations may contribute to carcinogenesis and promote resistance to chemotherapy. To evaluate potential functions of Keap1 and Nrf2 for organismal homeostasis, we characterized the pathway in Drosophila. We demonstrate that Keap1/Nrf2 signaling in the fruit fly is activated by oxidants, induces antioxidant and detoxification responses, and confers increased tolerance to oxidative stress. Importantly, keap1 loss-of-function mutations extend the lifespan of Drosophila males, supporting a role for Nrf2 signaling in the regulation of longevity. Interestingly, cancer chemopreventive drugs potently stimulate Drosophila Nrf2 activity, suggesting the fruit fly as an experimental system to identify and characterize such agents.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Secuencia Conservada , Drosophila/genética , Drosophila/crecimiento & desarrollo , Femenino , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína 1 Asociada A ECH Tipo Kelch , Esperanza de Vida , Masculino , Mutación , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Paraquat/toxicidad , Transducción de Señal , Activación Transcripcional
8.
Development ; 137(1): 141-50, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023169

RESUMEN

Epithelial sheet spreading and fusion underlie important developmental processes. Well-characterized examples of such epithelial morphogenetic events have been provided by studies in Drosophila, and include embryonic dorsal closure, formation of the adult thorax and wound healing. All of these processes require the basic region-leucine zipper (bZIP) transcription factors Jun and Fos. Much less is known about morphogenesis of the fly abdomen, which involves replacement of larval epidermal cells (LECs) with adult histoblasts that divide, migrate and finally fuse to form the adult epidermis during metamorphosis. Here, we implicate Drosophila Activating transcription factor 3 (Atf3), the single ortholog of human ATF3 and JDP2 bZIP proteins, in abdominal morphogenesis. During the process of the epithelial cell replacement, transcription of the atf3 gene declines. When this downregulation is experimentally prevented, the affected LECs accumulate cell-adhesion proteins and their extrusion and replacement with histoblasts are blocked. The abnormally adhering LECs consequently obstruct the closure of the adult abdominal epithelium. This closure defect can be either mimicked and further enhanced by knockdown of the small GTPase Rho1 or, conversely, alleviated by stimulating ecdysone steroid hormone signaling. Both Rho and ecdysone pathways have been previously identified as effectors of the LEC replacement. To elicit the gain-of-function effect, Atf3 specifically requires its binding partner Jun. Our data thus identify Atf3 as a new functional partner of Drosophila Jun during development.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción Activador 3/genética , Animales , Proteínas de Drosophila/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunoprecipitación , Microscopía Confocal , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/genética
9.
Biochem Biophys Res Commun ; 407(4): 735-40, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21439937

RESUMEN

In order to activate gene expression, transcription factors such as c-Jun have to reside in the nucleus. The abundance of c-Jun in the nucleus correlates with the activity of its target genes. As a consequence of excessive c-Jun activation, cells undergo apoptosis or changes in differentiation whereas decreased c-Jun function can reduce proliferation. In the present study we addressed how nuclear accumulation of the transcription factor c-Jun is regulated. First, we analyzed which functions of c-Jun are required for efficient nuclear accumulation. Mutants of c-Jun deficient in dimerization or DNA-binding show no defect in nuclear transport. Furthermore, c-Jun import into the nucleus of living cells occurred when the c-Jun phosphorylation sites were mutated as well in cells that lack the major c-Jun kinase, JNK, suggesting that c-Jun transport into the nucleus does not require JNK signaling. Conversely, however, binding of c-Jun seemed to enhance nuclear accumulation of JNK. In order to identify proteins that might be relevant for the nuclear translocation of c-Jun we searched for novel binding partners by a proteomic approach. In addition to the heat shock protein HSP70 and the DNA damage repair factors Ku70 and 80, we isolated human importin 8 as a novel interactor of c-Jun. Interaction of Imp 8 with c-Jun in human cells was confirmed by co-immunoprecipitation experiments. Nuclear accumulation of c-Jun does not require its functions as a transcription factor or the interaction with its kinase JNK. Interestingly, nuclear accumulation of JNK is regulated by interaction with c-Jun. Unraveling the mechanisms of c-Jun and JNK transport to the nucleus and its regulation will improve our understanding of their role in biological and pathophysiological processes.


Asunto(s)
Núcleo Celular/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Antígenos Nucleares/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Autoantígeno Ku , MAP Quinasa Quinasa 4/genética , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-jun/genética , beta Carioferinas/metabolismo
10.
Curr Opin Clin Nutr Metab Care ; 14(1): 41-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21102319

RESUMEN

PURPOSE OF REVIEW: The vertebrate cap'n'collar family transcription factor Nrf2 and its invertebrate homologues SKN-1 (in worms) and CncC (in flies) function as master mediators of antioxidant and detoxification responses and regulators of the cellular redox state. Nrf2 controls gene expression programs that defend various tissues against diverse electrophilic stressors and oxidative insults, thus protecting the organism from disorders that are caused or exacerbated by such stresses. Moreover, studies on model organisms implicate the Nrf2 pathway in the prevention of aging-related diseases and suggest that SKN-1-regulated and CncC-regulated gene expression can promote longevity. These facets of Nrf2 signaling have been thoroughly reviewed. This article discusses another aspect of the Nrf2 pathway's function that has not yet received the same degree of attention, but emerges as a topic of increasing interest and potential clinical impact: its role in metabolic regulation and its interaction with central signaling systems that respond to nutritional inputs. RECENT FINDINGS: Recent evidence identifies Nrf2 signaling as a mediator of the salutary effects of caloric restriction. Nrf2 signaling also crosstalks with metabolic signaling systems such as the insulin/Akt pathway as well as with the metabolism of lipids. Moreover, Nrf2 has a protective role in models of diabetic nephropathy. SUMMARY: The emerging role of Nrf2 as an effector of metabolic and longevity signals offers new therapeutic perspectives. The potential impact of pharmacological manipulation of Nrf2 signaling as a strategy for the prevention and treatment of metabolic disease can be envisioned.


Asunto(s)
Antioxidantes/metabolismo , Restricción Calórica , Metabolismo Energético , Longevidad , Enfermedades Metabólicas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Nefropatías Diabéticas , Expresión Génica , Regulación de la Expresión Génica , Enfermedades Metabólicas/genética , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Transducción de Señal , Factores de Transcripción/metabolismo
11.
Aging Cell ; 20(2): e13297, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33474790

RESUMEN

The progressively increasing frailty, morbidity and mortality of aging organisms coincides with, and may be causally related to, their waning ability to adapt to environmental perturbations. Transcriptional responses to challenges, such as oxidative stress or pathogens, diminish with age. This effect is manifest in the declining function of the stress responsive transcription factor Nrf2. Protective gene expression programs that are controlled by the Drosophila Nrf2 homolog, CncC, support homeostasis and longevity. Age-associated chromatin changes make these genes inaccessible to CncC binding and render them inert to signal-dependent transcriptional activation in old animals. In a previous paper, we have reported that overexpression of the CncC dimerization partner Maf-S counteracts this degenerative effect and preserves organism fitness. Building on this work, we show here that Maf-S overexpression prevents loss of chromatin accessibility and maintains gene responsiveness. Moreover, the same outcome, along with an extension of lifespan, can be achieved by inducing CncC target gene expression pharmacologically throughout adult life. Thus, pharmacological or dietary interventions that can preserve stress responsive gene expression may be feasible anti-aging strategies.


Asunto(s)
Envejecimiento/genética , Proteínas de Drosophila/genética , Proteínas Represoras/genética , Animales , Drosophila melanogaster/genética
12.
Elife ; 92020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31909709

RESUMEN

A newly discovered mechanism that causes the 'Minute' phenotype in fruit flies can explain how organisms are able to eliminate the mutant cells that arise occasionally during development.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Proteínas Potenciadoras de Unión a CCAAT , Competencia Celular , Drosophila melanogaster/genética
13.
Dev Cell ; 5(5): 811-6, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14602080

RESUMEN

Changes in the genetic makeup of an organism can extend lifespan significantly if they promote tolerance to environmental insults and thus prevent the general deterioration of cellular function that is associated with aging. Here, we introduce the Jun N-terminal kinase (JNK) signaling pathway as a genetic determinant of aging in Drosophila melanogaster. Based on expression profiling experiments, we demonstrate that JNK functions at the center of a signal transduction network that coordinates the induction of protective genes in response to oxidative challenge. JNK signaling activity thus alleviates the toxic effects of reactive oxygen species (ROS). In addition, we show that flies with mutations that augment JNK signaling accumulate less oxidative damage and live dramatically longer than wild-type flies. Our work thus identifies the evolutionarily conserved JNK signaling pathway as a major genetic factor in the control of longevity.


Asunto(s)
Envejecimiento/fisiología , Drosophila melanogaster/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Transducción de Señal/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Proteínas Quinasas JNK Activadas por Mitógenos , Esperanza de Vida , Fenotipo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transgenes
14.
Dev Cell ; 3(4): 511-21, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12408803

RESUMEN

Organogenesis involves cell proliferation followed by complex determination and differentiation events that are intricately controlled in time and space. The instructions for these different steps are, to a large degree, implicit in the gene expression profiles of the cells that partake in organogenesis. Combining fluorescence-activated cell sorting and SAGE, we analyzed genomic expression patterns in the developing eye of Drosophila melanogaster. Genomic activity changes as cells pass from an uncommitted proliferating progenitor state through determination and differentiation steps toward a specialized cell fate. Analysis of the upstream sequences of genes specifically expressed during the proliferation phase of eye development implicates the transcription factor DREF and its inhibitor dMLF in the control of cell growth in this organ.


Asunto(s)
Proteínas de Drosophila/genética , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Animales , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ojo/citología , Perfilación de la Expresión Génica , Organogénesis/genética
15.
Mol Cell Biol ; 26(22): 8293-302, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16966382

RESUMEN

The transcription factors of the Fos family have long been associated with the control of cell proliferation, although the molecular and cellular mechanisms that mediate this function are poorly understood. We investigated the contributions of Fos to the cell cycle and cell growth control using Drosophila imaginal discs as a genetically accessible system. The RNA interference-mediated inhibition of Fos in proliferating cells of the wing and eye discs resulted in a specific defect in the G2-to-M-phase transition, while cell growth remained unimpaired, resulting in a marked reduction in organ size. Consistent with the conclusion that Fos is required for mitosis, we identified cyclin B as a direct transcriptional target of Fos in Drosophila melanogaster, with Fos binding to a region upstream of the cyclin B gene in vivo and cyclin B mRNA being specifically reduced under Fos loss-of-function conditions.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Larva/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis , Ciclo Celular , División Celular , Proliferación Celular , Ciclina B/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fase G2 , Larva/crecimiento & desarrollo , Tamaño de los Órganos , Interferencia de ARN , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
16.
Mol Cell Biol ; 25(13): 5590-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15964814

RESUMEN

Based on overexpression studies and target gene analyses, the transcription factor DNA replication-related element factor (DREF) has been proposed to regulate growth and replication in Drosophila melanogaster. Here we present loss-of-function experiments to analyze the contribution of DREF to these processes. RNA interference-mediated extinction of DREF function in vivo demonstrates a requirement for the protein for normal progression through the cell cycle and consequently for growth of imaginal discs and the derived adult organs. We show that DREF regulates the expression of genes that are required for the transition of imaginal disc cells through S phase. In conditions of suppressed apoptosis, DREF activation can cause overgrowth of developing organs. These data establish DREF as a global regulator of transcriptional programs that mediate cell proliferation and organ growth during animal development.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Drosophila/fisiología , Proteínas de Insectos/fisiología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Drosophila/citología , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Mutación , Tamaño de los Órganos/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Fase S , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo
17.
Mol Biol Cell ; 13(8): 2771-82, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12181345

RESUMEN

Nuclear bodies represent a heterogeneous class of nuclear structures. Herein, we describe that a subset of nuclear bodies is highly enriched in components of the ubiquitin-proteasome pathway of proteolysis. We coined the term clastosome (from the Greek klastos, broken and soma, body) to refer to this type of nuclear body. Clastosomes contain a high concentration of 1) ubiquitin conjugates, 2) the proteolytically active 20S core and the 19S regulatory complexes of the 26S proteasome, and 3) protein substrates of the proteasome. Although detected in a variety of cell types, clastosomes are scarce under normal conditions; however, they become more abundant when proteasomal activity is stimulated. In contrast, clastosomes disappear when cells are treated with proteasome inhibitors. Protein substrates of the proteasome that are found concentrated in clastosomes include the short-lived transcription factors c-Fos and c-Jun, adenovirus E1A proteins, and the PML protein. We propose that clastosomes are sites where proteolysis of a variety of protein substrates is taking place.


Asunto(s)
Estructuras del Núcleo Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Ubiquitina/metabolismo , Animales , Animales Recién Nacidos , Estructuras del Núcleo Celular/química , Estructuras del Núcleo Celular/ultraestructura , Células Cultivadas , Inhibidores Enzimáticos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Masculino , Complejos Multienzimáticos/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Ratas Sprague-Dawley , Células de Schwann/citología , Células de Schwann/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor
18.
Sci Rep ; 6: 21455, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911346

RESUMEN

The Nrf2 transcription factor is well conserved throughout metazoan evolution and serves as a central regulator of adaptive cellular responses to oxidative stress. We carried out an RNAi screen in Drosophila S2 cells to better understand the regulatory mechanisms governing Nrf2 target gene expression. This paper describes the identification and characterization of the RNA polymerase II (Pol II) kinase Cdk12 as a factor that is required for Nrf2 target gene expression in cell culture and in vivo. Cdk12 is, however, not essential for bulk mRNA transcription and cells lacking CDK12 function are viable and able to proliferate. Consistent with previous findings on the DNA damage and heat shock responses, it emerges that Cdk12 may be specifically required for stress activated gene expression. Transcriptome analysis revealed that antioxidant gene expression is compromised in flies with reduced Cdk12 function, which makes them oxidative stress sensitive. In addition to supporting Reactive Oxygen Species (ROS) induced gene activation, Cdk12 suppresses genes that support metabolic functions in stressed conditions. We suggest that Cdk12 acts as a gene-selective Pol II kinase that engages a global shift in gene expression to switch cells from a metabolically active state to "stress-defence mode" when challenged by external stress.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Drosophila/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transcriptoma , Animales , Línea Celular , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Femenino , Genes Reporteros , Herbicidas/toxicidad , Masculino , Microscopía Fluorescente , Mifepristona/farmacología , Estrés Oxidativo/efectos de los fármacos , Paraquat/toxicidad , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
19.
Oncogene ; 21(42): 6434-45, 2002 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12226747

RESUMEN

Menin, a nuclear protein encoded by the tumor suppressor gene MEN1, interacts with the AP-1 transcription factor JunD and inhibits its transcriptional activity. In addition, overexpression of Menin counteracts Ras-induced tumorigenesis. We show that Menin inhibits ERK-dependent phosphorylation and activation of both JunD and the Ets-domain transcription factor Elk-1. We also show that Menin represses the inducible activity of the c-fos promoter. Furthermore, Menin expression inhibits Jun N-terminal kinase (JNK)-mediated phosphorylation of both JunD and c-Jun. Kinase assays show that Menin overexpression does not interfere with activation of either ERK2 or JNK1, suggesting that Menin acts at a level downstream of MAPK activation. An N-terminal deletion mutant of Menin that cannot inhibit JunD phosphorylation by JNK, can still repress JunD phosphorylation by ERK2, suggesting that Menin interferes with ERK and JNK pathways through two distinct inhibitory mechanisms. Taken together, our data suggest that Menin uncouples ERK and JNK activation from phosphorylation of their nuclear targets Elk-1, JunD and c-Jun, hence inhibiting accumulation of active Fos/Jun heterodimers. This study provides new molecular insights into the tumor suppressor function of Menin and suggests a mechanism by which Menin may interfere with Ras-dependent cell transformation and oncogenesis.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas de Unión al ADN , Proteínas Quinasas JNK Activadas por Mitógenos , Quinasa 1 de Quinasa de Quinasa MAP , Proteínas de Neoplasias/farmacología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Sitios de Unión , Cloranfenicol O-Acetiltransferasa/metabolismo , Regulación hacia Abajo , Glutatión Transferasa , Células HeLa , Humanos , Immunoblotting , MAP Quinasa Quinasa 4 , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Proteínas Quinasas Activadas por Mitógenos/farmacología , Fosforilación , Plásmidos , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteína Elk-1 con Dominio ets
20.
BMC Neurosci ; 6: 39, 2005 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-15932641

RESUMEN

BACKGROUND: The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. RESULTS: Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. CONCLUSION: This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.


Asunto(s)
Proteínas de Drosophila/genética , Genómica/métodos , MAP Quinasa Quinasa 4/genética , Transducción de Señal/genética , Sinapsis/genética , Factor de Transcripción AP-1/genética , Animales , Drosophila , Proteínas de Drosophila/biosíntesis , Femenino , MAP Quinasa Quinasa 4/biosíntesis , Masculino , Neuronas/fisiología , Análisis por Matrices de Proteínas/métodos , Sinapsis/metabolismo , Factor de Transcripción AP-1/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA