Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 32, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750469

RESUMEN

ß-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous ß-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter ß-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm ß-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in ß-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and ß-TCP.


Asunto(s)
Fosfatos de Calcio , Cerámica , Monocitos , Monocitos/citología , Cerámica/química , Fosfatos de Calcio/química , Humanos , Sustitutos de Huesos/química , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Porosidad
2.
Periodontol 2000 ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658591

RESUMEN

The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.

3.
J Mater Sci Mater Med ; 34(8): 39, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37498466

RESUMEN

The aim of this study was to produce a composite of microporous ß-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous ß-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from ß-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.


Asunto(s)
Proteína Morfogenética Ósea 2 , Clindamicina , Alginatos/química , Proteína Morfogenética Ósea 2/química , Cápsulas , Cerámica/química , Gelatina/química , Hidrogeles/química , Humanos , Animales
4.
J Synchrotron Radiat ; 29(Pt 3): 843-852, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511016

RESUMEN

X-ray nano-tomography with phase contrast (nanoCT) using synchrotron radiation is a powerful tool to non-destructively investigate 3D material properties at the nanoscale. In large bone lesions, such as severe bone fractures, bone cancer or other diseases, bone grafts substituting the lost bone might be necessary. Such grafts can be of biological origin or be composed of a synthetic bone substitute. The long-term functioning of artificial bone substitutes depends on many factors. Synchrotron nanoCT imaging has great potential to contribute to further the understanding of integration of implants into bone tissue by imaging the spatial interaction between bone tissue and implant, and by accessing the interface between implant material and bone tissue. With this aim, a methodology for evaluating the image quality is presented for in-line phase contrast nanoCT images of bone scaffold samples. A PMMA-embedded tricalcium phosphate scaffold was used with both a closed and an open porosity structure and bone ingrowths as a representative system of three known materials. Parameters such as spatial resolution and signal-to-noise ratio were extracted and used to explore and quantitatively compare the effects of implementation choices in the imaging setup, such as camera technology and imaging energy, on the resulting image quality. Increasing the X-ray energy from 17.5 keV to 29.6 keV leads to a notable improvement in image quality regardless of the camera technology used, with the two tested camera setups performing at a comparable level when the recorded intensity was kept constant.


Asunto(s)
Materiales Biocompatibles , Tomografía Computarizada por Rayos X , Huesos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Microscopía de Contraste de Fase , Sincrotrones
5.
J Mater Sci Mater Med ; 29(8): 129, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30066293

RESUMEN

The 4th Translational Research Symposium (TRS) was organised at the annual meeting of the European Society for Biomaterials (ESB) 2017, Athens, Greece, with a focus on 'Academia-Industry Clusters of Research for Innovation Catalysis'. Collaborations between research institutes and industry can be sustained in several ways such as: European Union (EU) funded consortiums; syndicates of academic institutes, clinicians and industries; funding from national governments; and private collaborations between universities and companies. Invited speakers from industry and research institutions presented examples of these collaborations in the translation of research ideas or concepts into marketable products. The aim of the present article is to summarize the key messages conveyed during these lectures. In particular, emphasis is put on the challenges to appropriately identify and select unmet clinical needs and their translation by ultimately implementing innovative and efficient solutions achieved through joint academic and industrial efforts.


Asunto(s)
Materiales Biocompatibles , Investigación Biomédica Traslacional , Industria Farmacéutica , Sector de Atención de Salud , Humanos , Apoyo a la Investigación como Asunto
6.
Anal Chem ; 88(7): 3826-35, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26959687

RESUMEN

Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (ß-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.


Asunto(s)
Calcio/química , Hueso Cortical/química , Minerales/química , Espectroscopía de Absorción de Rayos X , Fosfatos de Calcio/química , Simulación por Computador , Fluorescencia , Humanos , Espectrometría Raman , Rayos X
7.
J Mater Sci Mater Med ; 26(2): 63, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25631266

RESUMEN

The use of hydraulic calcium phosphate cements (CPCs) as bone substitute is impaired by their relatively poor handling due to the need to mix a powder and a liquid during surgery. The aim of the present study was to assess the possibility to design CPCs as inorganic dual-paste cements, where both pastes would be stable for years, but would react as soon as they are mixed together. Results showed that aqueous pastes of α-tricalcium phosphate (α-TCP) powder could be stabilized for up to a year at room temperature by the use of 0.1 M Mg chloride solution. Adding a calcium chloride solution in a 1:4 volume ratio activated α-TCP pastes provided the Ca/Mg ratio was larger than one. Mechanistic investigations suggest that Ca ions can displace Mg cations adsorbed at the surface of α-TCP particles to initiate α-TCP transformation to calcium-deficient hydroxyapatite and concomitant paste hardening. The compressive strength (29 MPa) was similar to that of commercial formulations (5-80 MPa). Other divalent cations (Ba, Ni, Sr) had a similar effect although with a different degree of efficacy.


Asunto(s)
Cementos para Huesos/síntesis química , Fosfatos de Calcio/síntesis química , Compuestos Inorgánicos/química , Adhesividad , Cationes , Fuerza Compresiva , Diseño de Fármacos , Estabilidad de Medicamentos , Dureza , Ensayo de Materiales , Pomadas , Polvos
8.
J Mater Sci Mater Med ; 26(3): 130, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25693675

RESUMEN

Differences in physico-chemical characteristics of bone grafts to fill bone defects have been demonstrated to influence in vitro bacterial biofilm formation. Aim of the study was to investigate in vivo staphylococcal biofilm formation on different calcium phosphate bone substitutes. A foreign-body guinea-pig infection model was used. Teflon cages prefilled with ß-tricalcium phosphate, calcium-deficient hydroxyapatite, or dicalcium phosphate (DCP) scaffold were implanted subcutaneously. Scaffolds were infected with 2 × 10(3) colony-forming unit of Staphylococcus aureus (two strains) or S. epidermidis and explanted after 3, 24 or 72 h of biofilm formation. Quantitative and qualitative biofilm analysis was performed by sonication followed by viable counts, and microcalorimetry, respectively. Independently of the material, S. aureus formed increasing amounts of biofilm on the surface of all scaffolds over time as determined by both methods. For S. epidermidis, the biofilm amount decreased over time, and no biofilm was detected by microcalorimetry on the DCP scaffolds after 72 h of infection. However, when using a higher S. epidermidis inoculum, increasing amounts of biofilm were formed on all scaffolds as determined by microcalorimetry. No significant variation in staphylococcal in vivo biofilm formation was observed between the different materials tested. This study highlights the importance of in vivo studies, in addition to in vitro studies, when investigating biofilm formation of bone grafts.


Asunto(s)
Biopelículas , Trasplante Óseo , Fosfatos de Calcio/administración & dosificación , Staphylococcus/metabolismo , Animales , Cobayas , Propiedades de Superficie , Andamios del Tejido
9.
BMC Res Notes ; 17(1): 122, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685087

RESUMEN

Fluorescence analysis of ß-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.


Asunto(s)
Artefactos , Fosfatos de Calcio , Microscopía Fluorescente , Microscopía Fluorescente/métodos , Fosfatos de Calcio/química , Humanos , Cerámica/química
10.
Bone Rep ; 20: 101739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38304619

RESUMEN

Bisphosphonates (BP) are anti-resorptive drugs that are widely used to prevent bone loss in osteoporosis. Since inhibition of bone resorption will cause a decrease in bone formation through a process called coupling, it is hypothesized that extended treatment protocols may impair bone healing. In this study, ß-tri­calcium-phosphate (ßTCP) ceramics were inserted into critical-size long bone defects in estrogen-deficient mice under BP therapy. The study assessed the benefits of coating the ceramics with Bone Morphogenetic Protein-2 (BMP2) and an engineered BMP2 analogue (L51P) that inactivates BMP antagonists on the healing process, implant resorption, and bone formation. Female NMRI mice (11-12 weeks of age) were ovariectomized (OVX) or sham operated. Eight weeks later, after the manifestation of ovariectomy-induced osteoporotic bone changes, BP therapy with Alendronate (ALN) was commenced. After another five weeks, a femoral critical-size defect was generated, rigidly fixed, and ßTCP-cylinders loaded with 0.25 µg or 2.5 µg BMP2, 2.5 µg L51P, and 0.25 µg BMP2/2.5 µg L51P, respectively, were inserted. Unloaded ßTCP-cylinders were used as controls. Femora were collected six and twelve weeks post-implantation. Histological and micro-computer tomography (MicroCT) evaluation revealed that insertion of cylinders coated with 2.5 µg BMP2 accelerated fracture repair and induced significant bone formation compared to controls (unloaded cylinders or coated with 2.5 µg L51P, 0.25 µg BMP2) already six weeks post-implantation, independent of estrogen-deficiency and BP therapy. The simultaneous administration of BMP2 and L51P (0.25 µg BMP2/2.5 µg L51P) did not promote fracture healing six and twelve weeks post-implantation. Moreover, new bone formation within the critical-size defect was directly linked to the removal of the ßTCP-implant in all experimental groups. No evidence was found that long-term therapy with ALN impaired the resorption of the implanted graft. However, osteoclast transcriptome signature was elevated in sham and OVX animals upon treatment with BP, with transcript levels being higher at six weeks than at twelve weeks post-surgery. Furthermore, the transcriptome profile of the developing repair tissue confirmed an accelerated repair process in animals treated with 2.5 µg BMP2 implants. L51P did not increase the bioefficacy of BMP2 in the applied defect model. The present study provides evidence that continuous administration of BP does not inhibit implant resorption and does not alter the kinetics of the healing process of critical-size long bone defects. Furthermore, the BMP2 variant L51P did not enhance the bioefficacy of BMP2 when applied simultaneously to the femoral critical-size defect in sham and OVX mice.

11.
Acta Biomater ; 169: 566-578, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37595772

RESUMEN

One of the most widely used materials for bone graft substitution is ß-Tricalcium phosphate (ß-TCP; ß-Ca3(PO4)2). ß-TCP is typically produced by sintering in air or vacuum. During this process, evaporation of phosphorus (P) species occurs, leading to the formation of a calcium-rich alkaline layer. It was recently shown that the evaporation of P species could be prevented by co-sintering ß-TCP with dicalcium phosphate (DCPA; CaHPO4; mineral name: monetite). The aim of this study was to see how a change of sintering atmosphere could affect the physico-chemical and biological properties of ß-TCP. For this purpose, three experimental groups were considered: ß-TCP cylinders sintered in air and subsequently polished to remove the surface layer (control group); the same polished cylinders after subsequent annealing at 500 °C in air to generate a calcium-rich alkaline layer (annealed group); and finally, ß-TCP cylinders sintered in a monetite-rich atmosphere and subsequently polished (monetite group). XPS analysis confirmed that cylinders from the annealed group had a significantly higher Ca/P molar ratio at their surface than that of the control group while this ratio was significantly lower for the cylinders from the monetite group. Sintering ß-TCP in the monetite-rich atmosphere significantly reduced the grain size and increased the density. Changes of surface composition affected the activity of osteoclasts seeded onto the surfaces, since annealed ß-TCP cylinders were significantly less resorbed than ß-TCP cylinders sintered in the monetite-rich atmosphere. This suggests that an increase of the surface Ca/P molar ratio leads to a decrease of osteoclastic resorption. STATEMENT OF SIGNIFICANCE: Minimal changes of surface and bulk (< 1%) composition have major effects on the ability of osteoclasts to resorb ß-tricalcium phosphate (ß-TCP), one of the most widely used ceramics for bone substitution. The results presented in this study are thus important for the calcium phosphate community because (i) ß-TCP may have up to 5% impurities according to ISO and ASTM standards and still be considered to be "pure ß-TCP", (ii) ß-TCP surface properties are generally not considered during biocompatibility assessment and (iii) a rationale can be proposed to explain the various inconsistencies reported in the literature on the biological properties of ß-TCP.


Asunto(s)
Resorción Ósea , Calcio , Humanos , Fosfatos de Calcio/farmacología , Atmósfera
12.
Acta Biomater ; 145: 1-24, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398267

RESUMEN

Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.


Asunto(s)
Sustitutos de Huesos , Calcinosis , Osificación Heterotópica , Huesos , Calcinosis/complicaciones , Humanos , Inflamación , Osificación Heterotópica/etiología
13.
Acta Biomater ; 144: 230-241, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35304323

RESUMEN

The aim of this work was to establish an organ model for staphylococcal infection of human bone samples and to investigate the influence and efficacy of a microporous ß-tricalcium phosphate ceramic (ß-TCP, RMS Foundation) loaded with hydrogels (alginate, alginate-di-aldehyde (ADA)-gelatin) and clindamycin on infected human bone tissue over a period of 28 days. For this purpose, human tibia plateaus, collected during total knee replacement surgery, were used as a source of bone material. Samples were infected with S. aureus ATCC29213 and treated with differently loaded ß-TCP composites (alginate +/- clindamycin, ADA-gelatin +/- clindamycin, unloaded). The loading of the composites was carried out by means of a flow chamber. The infection was observed for 28 days, quantifying bacteria in the medium and the osseus material on day 1, 7, 14, 21 and 28. All samples were histologically processed for bone vitality evaluation. Bone infection could be consistently performed within the organ model. In addition, a strong reduction in bacterial counts was recorded in the groups treated with ADA-gelatin + clindamycin and alginate + clindamycin, while the bacterial count in the control groups remained constant. No significant differences between groups could be observed in the number of lacunae filled with osteocytes suggesting no differences in bone vitality among groups. In an ex-vivo human bone infection model, over a period of 28 days bacterial growth could be reduced by treatment with ADA-Gel + CLI and ALG + CLI -releasing ß-TCP composites. This could be relevant for its clinical use. Further work will be necessary to improve the loading of ß-TCP and the bone infection organ model itself. STATEMENT OF SIGNIFICANCE: The common treatment of bone infections is debridement and systemic administration of antibiotics. In some cases, antibiotic-containing carriers are already used, but these must be removed again. Our work is intended to show another treatment option. The scaffold we have developed, made of a calcium phosphate ceramic and a hydrogel as the active substance carrier, can, in addition to releasing the active substance, also assume a load-bearing function of the bone and is biodegradable. In addition, the model we developed can also be used for the analysis and treatment of bone infections other than those of the musculoskeletal system. More importantly, it can also serve as a substitute for previously used animal experiments.


Asunto(s)
Materiales Biocompatibles , Osteomielitis , Alginatos/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Huesos , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/uso terapéutico , Clindamicina/farmacología , Clindamicina/uso terapéutico , Gelatina/farmacología , Humanos , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Osteomielitis/tratamiento farmacológico , Staphylococcus aureus
14.
Biomaterials ; 275: 120912, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34098150

RESUMEN

Some synthetic bone graft substitutes (BGS) can trigger ectopic bone formation, which is the hallmark of osteoinduction and the most important prerequisite for the repair of large bone defects. Unfortunately, measuring or predicting BGS osteoinductive potential based on in vitro experiments is currently impossible. A recent study claimed that synthetic BGS can induce bone formation ectopically if they create a local homeostatic imbalance during their in vivo mineralization. This raised the hope that a simple cell free in vitro mineralization experiment would correlate with osteoinduction. The aim of the present study was therefore to assess the ability of a quantitative in vitro mineralization test to predict and rank the osteoinductive potential of BGS. Eight calcium phosphate BGS already tested ectopically in 9 different in vivo studies were used for that purpose. The experiment was able to identify materials that are reliably osteoinductive from those that are not, but was inaccurate in ranking the osteoinductive materials between each other. Chemical contaminants (Ca2+, Mg2+, H+, OH-, PO43-) present in some of the BGS affected the in vitro mineralization experiment results, but not in a direction that could explain the different rankings. In conclusion, this study suggests that an in vitro experiment can be used as a fast and reliable screening tool to identify osteoinductive BGS and underline the need to study ionic contaminants on calcium phosphate BGS.


Asunto(s)
Sustitutos de Huesos , Fosfatos de Calcio/farmacología , Microscopía Electrónica de Rastreo , Osteogénesis
15.
Acta Biomater ; 121: 621-636, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33249227

RESUMEN

Evaporation of phosphate species during thermal treatment (> 400 °C) of calcium phosphates leads to the formation of an alkaline layer on their surface. The aim of this study was to evaluate the hypothesis that the biological response of thermally treated calcium phosphates is modified by the presence of such an alkaline layer on their surface. For this purpose, 0.125-0.180 mm α- and ß-tricalcium phosphate (TCP) granules were obtained by crushing and size classification, with some being subjected to thermal treatment at 500 °C. The four types of granules (α-TCP, ß-TCP, α-TCP-500 °C, and ß-TCP-500 °C) were implanted subcutaneously and orthotopically in rats. Sham operations served as control. Subcutaneously, α-TCP and ß-TCP induced significantly more multinucleated giant cells (MNGCs) than calcined granules. Most of the induced MNGCs were TRAP-negative, CD-68 positive and cathepsin K-negative, reflecting a typical indication of a reaction with a foreign body. The vessel density was significantly higher in the α-TCP and ß-TCP groups than it was in the α-TCP-500 °C and ß-TCP-500 °C groups. In the femur model, ß-TCP-500 °C induced significantly more new bone formation than that induced by ß-TCP. The granule size was also significantly larger in the ß-TCP-500 °C group, making it more resistant to degradation than ß-TCP. The MNGC density was higher in the α-TCP and ß-TCP groups than in the α-TCP-500 °C and ß-TCP-500 °C groups, including cathepsin-positive, CD-68 positive, TRAP-positive and TRAP-negative MNGCs. In conclusion, this study confirms that the biological response of calcium phosphates was affected by the presence of an alkaline layer on their surface. Thermally-treated α-TCP and ß-TCP granules produced significantly fewer MNGCs and were significantly less degraded than non-thermally-treated α-TCP and ß-TCP granules. Thermally treating α-TCP and ß-TCP granules shifts the reaction from a foreign body reaction towards a physiological reaction by downregulating the number of induced MNGCs and enhancing degradation resistance.


Asunto(s)
Fosfatos de Calcio , Fémur , Animales , Fosfatos de Calcio/farmacología , Reacción a Cuerpo Extraño , Ratas
16.
Chimia (Aarau) ; 64(10): 723-9, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21138161

RESUMEN

Bone is a complex natural material with outstanding mechanical properties and remarkable self-healing capabilities. The mechanical strength is achieved by a complex structure of a mineral part comprising apatitic calcium phosphate crystals embedded in an organic matrix. Bone also contains several types of cells constantly replacing mature bone with new bone. These cells are able to seal fractures and fill gaps with new bone in case of structural damage. However, if a defect exceeds a critical size, surgery is necessary to fill the void with a spacer in order to prevent soft tissue from growing into the defect and delaying the healing process. The spacers, also known as bone grafts, can either be made of fresh bone from the patient, of processed bone from donor organisms, or of synthetic materials chemically similar to the mineral part of bone. Synthetic bone void fillers are also known as bone graft substitutes. This review aims at explaining the biological and chemical background that lead to the development of synthetic bone graft substitutes and gives an overview of the current state of development. It also highlights the multidisciplinary nature of biomaterials research, which combines cell biology and medicine with chemistry, mineralogy, crystallography, and mechanical engineering.


Asunto(s)
Sustitutos de Huesos/uso terapéutico , Huesos/química , Fosfatos de Calcio/uso terapéutico , Cerámica/uso terapéutico , Fracturas Óseas/terapia , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Sustitutos de Huesos/química , Huesos/citología , Huesos/metabolismo , Huesos/ultraestructura , Fosfatos de Calcio/química , Cerámica/química , Humanos , Osteogénesis
17.
Acta Biomater ; 113: 23-41, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32565369

RESUMEN

ß-tricalcium phosphate (ß-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of ß-TCP physico-chemical properties: ß-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered ß-TCP is coated with a Ca-rich alkaline phase; ß-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; ß-TCP grain size and porosity are strongly modified by the presence of minute amounts of ß-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on ß-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to ß-tricalcium phosphate (ß-TCP). ß-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, ß-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.


Asunto(s)
Sustitutos de Huesos , Fosfatos de Calcio , Regeneración Ósea , Huesos
18.
Acta Biomater ; 102: 440-457, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756552

RESUMEN

Several mechanisms proposed to explain the osteoinductive potential of calcium phosphates involve surface mineralization ("bioactivity") and mention the occurrence of concentration gradients between the inner and the outer part of the implanted material. Determining the evolution of the local chemical environment occurring inside the pores of an implanted bone graft substitute (BGS) is therefore highly relevant. A quantitative and fast method was developed to measure the chemical changes occurring within the pores of ß-Tricalcium Phosphate (ß-TCP) granules incubated in a simulated body fluid. A factorial design of experiment was used to test the effect of particle size, specific surface area, microporosity, and purity of the ß-TCP granules. Large pH, calcium and phosphate concentration changes were observed inside the BGS and lasted for several days. The kinetics and magnitude of these changes (up to 2 pH units) largely depended on the processing and properties of the granules. Interestingly, processing parameters that increased the kinetics and magnitude of the local chemical changes are parameters considered to favor calcium phosphate osteoinduction, suggesting that the model might be useful to predict the osteoinductive potential of BGSs. STATEMENT OF SIGNIFICANCE: Recent results suggest that in situ mineralization of biomaterials (polymers, ceramics, metals) might be key in their ability to trigger ectopic bone formation. This is the reason why the effect on in situ mineralization of various synthesis parameters of ß-tricalcium phosphate granules was studied (size, microporosity, specific surface area, and Ca/P molar ratio). To the best of our knowledge, this is the first article devoted to the chemical changes occurring within the pores of a bone graft substitute. We believe that the manuscript will prove to be highly important in the design and mechanistic understanding of drug-free osteoinductive biomaterials.


Asunto(s)
Sustitutos de Huesos/química , Fosfatos de Calcio/química , Tamaño de la Partícula , Porosidad , Prótesis e Implantes , Solubilidad
19.
Acta Biomater ; 89: 391-402, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30831328

RESUMEN

The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (ß-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered ß-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of ß-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. ß-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped ß-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping ß-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.


Asunto(s)
Resorción Ósea/metabolismo , Fosfatos de Calcio , Osteoclastos/metabolismo , Animales , Resorción Ósea/patología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacocinética , Fosfatos de Calcio/farmacología , Magnesio/química , Magnesio/farmacocinética , Magnesio/farmacología , Espectrometría de Masas , Ratones , Microscopía Electrónica de Rastreo , Osteoclastos/ultraestructura , Difracción de Rayos X
20.
Sci Transl Med ; 11(489)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019025

RESUMEN

Bone morphogenetic protein (BMP)/carriers approved for orthopedic procedures achieve efficacy superior or equivalent to autograft bone. However, required supraphysiological BMP concentrations have been associated with potential local and systemic adverse events. Suboptimal BMP/receptor binding and rapid BMP release from approved carriers may contribute to these outcomes. To address these issues and improve efficacy, we engineered chimeras with increased receptor binding by substituting BMP-6 and activin A receptor binding domains into BMP-2 and optimized a carrier for chimera retention and tissue ingrowth. BV-265, a BMP-2/BMP-6/activin A chimera, demonstrated increased binding affinity to BMP receptors, including activin-like kinase-2 (ALK2) critical for bone formation in people. BV-265 increased BMP intracellular signaling, osteogenic activity, and expression of bone-related genes in murine and human cells to a greater extent than BMP-2 and was not inhibited by BMP antagonist noggin or gremlin. BV-265 induced larger ectopic bone nodules in rats compared to BMP-2 and was superior to BMP-2, BMP-2/6, and other chimeras in nonhuman primate bone repair models. A composite matrix (CM) containing calcium-deficient hydroxyapatite granules suspended in a macroporous, fenestrated, polymer mesh-reinforced recombinant human type I collagen matrix demonstrated improved BV-265 retention, minimal inflammation, and enhanced handling. BV-265/CM was efficacious in nonhuman primate bone repair models at concentrations ranging from 1/10 to 1/30 of the BMP-2/absorbable collagen sponge (ACS) concentration approved for clinical use. Initial toxicology studies were negative. These results support evaluations of BV-265/CM as an alternative to BMP-2/ACS in clinical trials for orthopedic conditions requiring augmented healing.


Asunto(s)
Activinas/química , Proteína Morfogenética Ósea 6/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Activinas/farmacología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 6/farmacología , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , Humanos , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA