Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(7): e2201948119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745796

RESUMEN

Understanding the relationships between functional traits and environment is increasingly important for assessing ecosystem health and forecasting biotic responses to future environmental change. Taxon-free analyses of functional traits (ecometrics) allow for testing the performance of such traits through time, utilizing both the fossil record and paleoenvironmental proxies. Here, we test the role of body size as a functional trait with respect to climate, using turtles as a model system. We examine the influence of mass-specific metabolic rate as a functional factor in the sorting of body size with environmental temperature and investigate the utility of community body size composition as an ecometric correlated to climate variables. We then apply our results to the fossil record of the Plio-Pleistocene Shungura Formation in Ethiopia. Results show that turtle body sizes scale with mass-specific metabolic rate for larger taxa, but not for the majority of species, indicating that metabolism is not a primary driver of size. Body size ecometrics have stronger predictive power at continental than at global scales, but without a single, dominant predictive functional relationship. Application of ecometrics to the Shungura fossil record suggests that turtle paleocommunity ecometrics coarsely track independent paleoclimate estimates at local scales. We hypothesize that both human disruption and biotic interactions limit the ecometric fit of size to climate in this clade. Nonetheless, examination of the consistency of trait-environment relationships through deep and shallow time provides a means for testing anthropogenic influences on ecosystems.


Asunto(s)
Ecosistema , Tortugas , Animales , Humanos , Clima , Fósiles , Reptiles
2.
J Hum Evol ; 178: 103333, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965446

RESUMEN

Theropithecus brumpti is a primate known from numerous craniodental specimens in the Plio-Pleistocene Shungura Formation (Lower Omo Valley, Ethiopia), but the anatomy of its hindlimb is documented only by a few associated and mostly incomplete postcranial specimens. The adaptations of T. brumpti are still debated, with its substrate preferences and its use of squatting postures recently discussed based on anatomical differences when compared with its extant representative, Theropithecus gelada. Here, we describe an associated femur and tibia (L 869-1 and L 869-2) of a presumed T. brumpti male and a partial foot (L 865-1r and L 865-1t) of a male T. brumpti, dated to ca. 2.6 Ma and ca. 2.32 Ma respectively. Based on univariate and bivariate morphometric analyses, we provide new data on the morphological correlates of substrate preferences and postural behaviors of this fossil species. Our results are in agreement with previous analyses and present T. brumpti as a predominantly terrestrial primate. We demonstrate the presence of osteological correlates associated with the use of squatting behaviors in T. brumpti but also point to significant anatomical differences between this paleontological species and T. gelada. These differences blur the functional value of characters previously identified as diagnostic of T. gelada and its postural behavior. We further document the postcranial distinctiveness of the Theropithecus clade in relation to the Papio clade. This study thus provides new insights into the postcranial anatomy and paleoecology of an abundant fossil primate from the Plio-Pleistocene of eastern Africa.


Asunto(s)
Cercopithecidae , Theropithecus , Animales , Masculino , Cercopithecidae/anatomía & histología , Theropithecus/anatomía & histología , Paleontología , Papio/anatomía & histología , Fósiles , Miembro Posterior
3.
Nature ; 530(7589): 215-8, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26863981

RESUMEN

The palaeobiological record of 12 million to 7 million years ago (Ma) is crucial to the elucidation of African ape and human origins, but few fossil assemblages of this period have been reported from sub-Saharan Africa. Since the 1970s, the Chorora Formation, Ethiopia, has been widely considered to contain ~10.5 million year (Myr) old mammalian fossils. More recently, Chororapithecus abyssinicus, a probable primitive member of the gorilla clade, was discovered from the formation. Here we report new field observations and geochemical, magnetostratigraphic and radioisotopic results that securely place the Chorora Formation sediments to between ~9 and ~7 Ma. The C. abyssinicus fossils are ~8.0 Myr old, forming a revised age constraint of the human-gorilla split. Other Chorora fossils range in age from ~8.5 to 7 Ma and comprise the first sub-Saharan mammalian assemblage that spans this period. These fossils suggest indigenous African evolution of multiple mammalian lineages/groups between 10 and 7 Ma, including a possible ancestral-descendent relationship between the ~9.8 Myr old Nakalipithecus nakayamai and C. abyssinicus. The new chronology and fossils suggest that faunal provinciality between eastern Africa and Eurasia had intensified by ~9 Ma, with decreased faunal interchange thereafter. The Chorora evidence supports the hypothesis of in situ African evolution of the Gorilla-Pan-human clade, and is concordant with the deeper divergence estimates of humans and great apes based on lower mutation rates of ~0.5 × 10(-9) per site per year (refs 13 - 15).


Asunto(s)
Fósiles , Gorilla gorilla , Filogenia , Datación Radiométrica , Animales , Etiopía , Sedimentos Geológicos/química , Gorilla gorilla/genética , Humanos , Tasa de Mutación , Factores de Tiempo
4.
J Hum Evol ; 140: 102377, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-28966046

RESUMEN

New hippopotamid specimens recently collected at Kanapoi (ca. 4 Ma) are similar to the taxon previously recognized in this site and referred to aff. Hippopotamus protamphibius. Their examination provided the opportunity to reassess the taxonomic status of this taxon. It appears different from the late Miocene hippopotamids from the Turkana Basin (prominently Archaeopotamus harvardi), but also differs from the late Pliocene-early Pleistocene aff. Hip. protamphibius, which is smaller and displays more advanced features (notably canine expansion and orbit elevation). In contrast, the Kanapoi material appears very similar to the material from the Hadar Formation (3.4 Ma-2.9 Ma). However, the current confusion surrounding the taxonomic status of the Hadar specimens, previously attributed to various taxa that may be identical, does not allow attribution of a specific name to the Kanapoi material for now and, while waiting for the revision of Hadar hippopotamid diversity, it is referred here to aff. Hippopotamus cf. sp. Hadar. This contribution allows recognizing that a large hippopotamid, possibly a transitional form between the late Miocene species and Plio-Pleistocene species, was distributed from Afar to Turkana between 4.2 Ma and 2.95 Ma. The marked endemism of hippopotamids in the Pleistocene rift basins therefore initiated after 2.9 Ma.


Asunto(s)
Artiodáctilos/clasificación , Evolución Biológica , Fósiles/anatomía & histología , Animales , Artiodáctilos/anatomía & histología , Kenia
5.
Proc Biol Sci ; 286(1896): 20182417, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30963938

RESUMEN

Studying ontogeny in both extant and extinct species can unravel the mechanisms underlying mammal diversification and specialization. Among mammalian clades, Cetartiodactyla encompass species with a wide range of adaptations, and ontogenetic evidence could clarify longstanding debates on the origins of modern specialized families. Here, we study the evolution of dental eruption patterns in early diverging cetartiodactyls to assess the ecological and biological significance of this character and shed new light on phylogenetic issues. After investigation of the ontogenetic dental series of 63 extinct genera, our parsimony reconstructions of eruption state evolution suggest that the eruption of molars before permanent premolars represents a plesiomorphic condition within Cetartiodactyla. This result substantially differs from a previous study based on modern species only. As a result, the presence of this pattern in most ruminants might represent an ancestral condition contributing to their specialized herbivory, rather than an original adaptation. In contrast, the late eruption of molars in hippopotamoids is more likely related to biological aspects, such as increases in body mass and slower pace of life. Our study mainly shows that eruption sequences reliably characterize higher level cetartiodactyl taxa and could represent a new source of phylogenetic characters, especially to disentangle the origin of hippopotamoids and cetaceans.


Asunto(s)
Artiodáctilos/anatomía & histología , Evolución Biológica , Cetáceos/anatomía & histología , Fósiles/anatomía & histología , Erupción Dental , Animales , Artiodáctilos/fisiología , Cetáceos/fisiología , Filogenia , Especificidad de la Especie
6.
J Hum Evol ; 120: 48-75, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29191415

RESUMEN

Eight years of excavation work by the Olduvai Geochronology and Archaeology Project (OGAP) has produced a rich vertebrate fauna from several sites within Bed II, Olduvai Gorge, Tanzania. Study of these as well as recently re-organized collections from Mary Leakey's 1972 HWK EE excavations here provides a synthetic view of the faunal community of Olduvai during Middle Bed II at ∼1.7-1.4 Ma, an interval that captures the local transition from Oldowan to Acheulean technology. We expand the faunal list for this interval, name a new bovid species, clarify the evolution of several mammalian lineages, and record new local first and last appearances. Compositions of the fish and large mammal assemblages support previous indications for the dominance of open and seasonal grassland habitats at the margins of an alkaline lake. Fish diversity is low and dominated by cichlids, which indicates strongly saline conditions. The taphonomy of the fish assemblages supports reconstructions of fluctuating lake levels with mass die-offs in evaporating pools. The mammals are dominated by grazing bovids and equids. Habitats remained consistently dry and open throughout the entire Bed II sequence, with no major turnover or paleoecological changes taking place. Rather, wooded and wet habitats had already given way to drier and more open habitats by the top of Bed I, at 1.85-1.80 Ma. This ecological change is close to the age of the Oldowan-Acheulean transition in Kenya and Ethiopia, but precedes the local transition in Middle Bed II. The Middle Bed II large mammal community is much richer in species and includes a much larger number of large-bodied species (>300 kg) than the modern Serengeti. This reflects the severity of Pleistocene extinctions on African large mammals, with the loss of large species fitting a pattern typical of defaunation or 'downsizing' by human disturbance. However, trophic network (food web) analyses show that the Middle Bed II community was robust, and comparisons with the Serengeti community indicate that the fundamental structure of food webs remained intact despite Pleistocene extinctions. The presence of a generalized meat-eating hominin in the Middle Bed II community would have increased competition among carnivores and vulnerability among herbivores, but the high generality and interconnectedness of the Middle Bed II food web suggests this community was buffered against extinctions caused by trophic interactions.


Asunto(s)
Arqueología , Evolución Cultural , Peces , Fósiles , Hominidae , Mamíferos , Animales , Biota , Ambiente , Paleontología , Tanzanía , Tecnología
7.
J Hum Evol ; 111: 33-53, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28874273

RESUMEN

The Oldowan archeological record of the Shungura Formation, Member F (Lower Omo valley, Ethiopia) comprises more than one hundred occurrences distributed within archeological complexes, where multiple small spots were found in association with one or two larger occurrences. Such spatial patterning could reflect hominin spatial behavior, repeated occupations within a single sedimentary unit, or taphonomic and/or collection biases. Here we test these hypotheses by way of a geoarcheological and taphonomical analysis using four criteria to assess the preservation of the lithic assemblages: (1) size composition, (2) artifact abrasion, (3) bone abrasion, and (4) orientations of lithic artifacts and bones (i.e., fabrics). We propose a new model of taphonomically induced spatial patterning where the multiple, small, well circumscribed occurrences result primarily from post-depositional processes and therefore do not reflect any underlying behavioral patterns. The large number of archeological occurrences documented in Member F, therefore, corresponds to a limited number of primary occupations (<10). The archeological occupation is mainly restricted to the lower part of Member F and may reflect a single or a small number of occupation episodes, which were located on previous levees of the paleo-Omo River, in nearby floodplain areas, or on the riverbank. This strongly suggests that most of the knapping activities originally took place close to the river. This preference of the Omo toolmakers for riverine environments could explain the scarcity of archeological material in the upper part of Member F that comprises primarily distal floodplain sedimentary facies.


Asunto(s)
Arqueología , Ecosistema , Animales , Ambiente , Etiopía , Fósiles , Hominidae , Ríos
8.
Proc Biol Sci ; 283(1838)2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629027

RESUMEN

Both dust and silica phytoliths have been shown to contribute to reducing tooth volume during chewing. However, the way and the extent to which they individually contribute to tooth wear in natural conditions is unknown. There is still debate as to whether dental microwear represents a dietary or an environmental signal, with far-reaching implications on evolutionary mechanisms that promote dental phenotypes, such as molar hypsodonty in ruminants, molar lengthening in suids or enamel thickening in human ancestors. By combining controlled-food trials simulating natural conditions and dental microwear textural analysis on sheep, we show that the presence of dust on food items does not overwhelm the dietary signal. Our dataset explores variations in dental microwear textures between ewes fed on dust-free and dust-laden grass or browse fodders. Browsing diets with a dust supplement simulating Harmattan windswept environments contain more silica than dust-free grazing diets. Yet browsers given a dust supplement differ from dust-free grazers. Regardless of the presence or the absence of dust, sheep with different diets yield significantly different dental microwear textures. Dust appears a less significant determinant of dental microwear signatures than the intrinsic properties of ingested foods, implying that diet plays a critical role in driving the natural selection of dental innovations.


Asunto(s)
Dieta/veterinaria , Polvo , Desgaste de los Dientes , Animales , Femenino , Alimentos , Diente Molar , Ovinos , Porcinos
9.
J Hum Evol ; 94: 28-44, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27178456

RESUMEN

Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.


Asunto(s)
Distribución Animal , Evolución Biológica , Fósiles , Hominidae/fisiología , Animales , Ambiente , Geología , Kenia
11.
Biol Lett ; 9(1): 20120890, 2013 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-23234862

RESUMEN

Late Pliocene climate changes have long been implicated in environmental changes and mammalian evolution in Africa, but high-resolution examinations of the fossil and climatic records have been hampered by poor sampling. By using fossils from the well-dated Shungura Formation (lower Omo Valley, northern Turkana Basin, southern Ethiopia), we investigate palaeodietary changes in one bovid and in one suid lineage from 3 to 2 Ma using stable isotope analysis of tooth enamel. Results show unexpectedly large increases in C(4) dietary intake around 2.8 Ma in both the bovid and suid, and possibly in a previously reported hippopotamid species. Enamel δ(13)C values after 2.8 Ma in the bovid (Tragelaphus nakuae) are higher than recorded for any living tragelaphin, and are not expected given its conservative dental morphology. A shift towards increased C(4) feeding at 2.8 Ma in the suid (Kolpochoerus limnetes) appears similarly decoupled from a well-documented record of dental evolution indicating gradual and progressive dietary change. The fact that two, perhaps three, disparate Pliocene herbivore lineages exhibit similar, and contemporaneous changes in dietary behaviour suggests a common environmental driver. Local and regional pollen, palaeosol and faunal records indicate increased aridity but no corresponding large and rapid expansion of grasslands in the Turkana Basin at 2.8 Ma. Our results provide new evidence supporting ecological change in the eastern African record around 2.8 Ma, but raise questions about the resolution at which different ecological proxies may be comparable, the correlation of vegetation and faunal change, and the interpretation of low δ(13)C values in the African Pliocene.


Asunto(s)
Antílopes/fisiología , Esmalte Dental/química , Dieta , Ambiente , Fósiles , Porcinos/fisiología , Animales , Evolución Biológica , Isótopos de Carbono/análisis , Ecosistema , Etiopía , Isótopos de Oxígeno/análisis , Paleontología
12.
Proc Natl Acad Sci U S A ; 107(26): 11871-6, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20547829

RESUMEN

The affinities of the Hippopotamidae are at the core of the phylogeny of Cetartiodactyla (even-toed mammals: cetaceans, ruminants, camels, suoids, and hippos). Molecular phylogenies support Cetacea as sister group of the Hippopotamidae, implying a long ghost lineage between the earliest cetaceans (approximately 53 Ma) and the earliest hippopotamids (approximately 16 Ma). Morphological studies have proposed two different sister taxa for hippopotamids: suoids (notably palaeochoerids) or anthracotheriids. Evaluating these phylogenetic hypotheses requires substantiating the poorly known early history of the Hippopotamidae. Here, we undertake an original morphological phylogenetic analysis including several "suiform" families and previously unexamined early Miocene taxa to test previous conflicting hypotheses. According to our results, Morotochoerus ugandensis and Kulutherium rusingensis, until now regarded as the sole African palaeochoerid and the sole African bunodont anthracotheriid, respectively, are unambiguously included within the Hippopotamidae. They are the earliest known hippopotamids and set the family fossil record back to the early Miocene (approximately 21 Ma). The analysis reveals that hippopotamids displayed an unsuspected taxonomic and body size diversity and remained restricted to Africa during most of their history, until the latest Miocene. Our results also confirm the deep nesting of Hippopotamidae within the paraphyletic Anthracotheriidae; this finding allows us to reconstruct the sequence of dental innovations that links advanced selenodont anthracotheriids to hippopotamids, previously a source of major disagreements on hippopotamid origins. The analysis demonstrates a close relationship between Eocene choeropotamids and anthracotheriids, a relationship that potentially fills the evolutionary gap between earliest hippopotamids and cetaceans implied by molecular analyses.


Asunto(s)
Artiodáctilos/clasificación , Artiodáctilos/genética , Evolución Biológica , África , Animales , Artiodáctilos/anatomía & histología , Fósiles , Historia Antigua , Modelos Biológicos , Filogenia , Diente/anatomía & histología
13.
Sci Rep ; 13(1): 16941, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805524

RESUMEN

An in-depth study of the Early Pleistocene European remains of Hippopotamus has allowed the first detailed description of the incidence and types of dental alterations related to palaeopathologies and potentially linked to climatic and environmental factors. The results of a long-term qualitative and quantitative assessment highlight the importance of nutrient deficiencies on the development of dental enamel hypoplasia in Hippopotamus. Glacial cyclicity and the resulting changes in humidity and plant community structure conditioned the local environments critical for the survival of this taxon. Two main intervals of putative constrained nutritionally restrictions were detected at ca. 1.8 Ma and ca. 0.86 Ma (i.e., MIS63 and MIS21, respectively). Statistical comparisons show an increase in the frequency of dental hypoplasia between these two chronological periods, thus reinforcing the idea of increased seasonality in the circum-Mediterranean environments during the Early Pleistocene.


Asunto(s)
Artiodáctilos , Hipoplasia del Esmalte Dental , Animales , Fósiles
14.
Sci Rep ; 13(1): 14350, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658122

RESUMEN

The long stratigraphic sequence of the Shungura Formation in the Lower Omo Valley documents 3 million years (Ma) of hominin evolution, which, when combined with detailed paleo-depositional environmental data, opens new perspectives for understanding the complex interactions between hominin landscape use and the development of stone tool-mediated activities. Stone tool assemblages produced by Paranthropus aethiopicus and/or a species of early Homo from ~ 2.3 Ma, reflect their ability to deal with the raw material scarce environment of the Lower Omo Valley. It remains to be seen whether this activity can be related to a single, brief occupation event or the expression of an emergent new adaptation. Here we report on the newly investigated site complex of OMO 79, which produced the first evidence for multiple phases of hominin tool-making and use in the Shungura Formation. The development of this long-lasting techno-economic behavior marks a cognitive tipping point around 2.3 Ma in the Lower Omo Valley, evidenced by the adaptability of the early hominins to resource-constrained environments.


Asunto(s)
Aclimatación , Ambiente , Etiopía
15.
Nature ; 440(7086): 883-9, 2006 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-16612373

RESUMEN

The origin of Australopithecus, the genus widely interpreted as ancestral to Homo, is a central problem in human evolutionary studies. Australopithecus species differ markedly from extant African apes and candidate ancestral hominids such as Ardipithecus, Orrorin and Sahelanthropus. The earliest described Australopithecus species is Au. anamensis, the probable chronospecies ancestor of Au. afarensis. Here we describe newly discovered fossils from the Middle Awash study area that extend the known Au. anamensis range into northeastern Ethiopia. The new fossils are from chronometrically controlled stratigraphic sequences and date to about 4.1-4.2 million years ago. They include diagnostic craniodental remains, the largest hominid canine yet recovered, and the earliest Australopithecus femur. These new fossils are sampled from a woodland context. Temporal and anatomical intermediacy between Ar. ramidus and Au. afarensis suggest a relatively rapid shift from Ardipithecus to Australopithecus in this region of Africa, involving either replacement or accelerated phyletic evolution.


Asunto(s)
Evolución Biológica , Fósiles , Hominidae/clasificación , Hominidae/fisiología , Animales , Dentición , Ambiente , Etiopía , Fémur/anatomía & histología , Geografía , Historia Antigua , Hominidae/anatomía & histología , Paleontología , Filogenia , Factores de Tiempo
16.
PeerJ ; 10: e13210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411256

RESUMEN

The Early Pleistocene was a critical time period in the evolution of eastern African mammal faunas, but fossil assemblages sampling this interval are poorly known from Ethiopia's Afar Depression. Field work by the Hadar Research Project in the Busidima Formation exposures (~2.7-0.8 Ma) of Hadar in the lower Awash Valley, resulted in the recovery of an early Homo maxilla (A.L. 666-1) with associated stone tools and fauna from the Maka'amitalu basin in the 1990s. These assemblages are dated to ~2.35 Ma by the Bouroukie Tuff 3 (BKT-3). Continued work by the Hadar Research Project over the last two decades has greatly expanded the faunal collection. Here, we provide a comprehensive account of the Maka'amitalu large mammals (Artiodactyla, Carnivora, Perissodactyla, Primates, and Proboscidea) and discuss their paleoecological and biochronological significance. The size of the Maka'amitalu assemblage is small compared to those from the Hadar Formation (3.45-2.95 Ma) and Ledi-Geraru (2.8-2.6 Ma) but includes at least 20 taxa. Bovids, suids, and Theropithecus are common in terms of both species richness and abundance, whereas carnivorans, equids, and megaherbivores are rare. While the taxonomic composition of the Maka'amitalu fauna indicates significant species turnover from the Hadar Formation and Ledi-Geraru deposits, turnover seems to have occurred at a constant rate through time as taxonomic dissimilarity between adjacent fossil assemblages is strongly predicted by their age difference. A similar pattern characterizes functional ecological turnover, with only subtle changes in dietary proportions, body size proportions, and bovid abundances across the composite lower Awash sequence. Biochronological comparisons with other sites in eastern Africa suggest that the taxa recovered from the Maka'amitalu are broadly consistent with the reported age of the BKT-3 tuff. Considering the age of BKT-3 and biochronology, a range of 2.4-1.9 Ma is most likely for the faunal assemblage.


Asunto(s)
Hominidae , Mamíferos Proboscídeos , Theropithecus , Bovinos , Animales , Porcinos , Etiopía , Ambiente , Fósiles , Mamíferos , Perisodáctilos
17.
Ecol Evol ; 9(13): 7597-7612, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31346425

RESUMEN

The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals.

18.
Sci Rep ; 8(1): 14052, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232366

RESUMEN

This study aims to explore the feeding ecology of two terrestrial papionins, Papio and Theropithecus from the Shungura Formation in Ethiopia, the most complete stratigraphic and paleontological record of the African Plio-Pleistocene. Two aspects were evaluated using Dental Microwear Texture Analysis: differences in diet between the extinct genera and their extant relatives, and any potential dietary fluctuations over time. Amongst more than 2,500 cercopithecid dental remains, 154 Theropithecus molars and 60 Papio molars were considered. Thirty-nine extant wild baboons and 20 wild geladas were also considered. The results show that diets of extinct monkeys from Member G already differed between genera as it is the case for their extant representatives. The shearing facets on the Theropithecus molars display significant variations in microwear textures, suggesting several dietary shifts over time. Two events point to higher intakes of herbaceous monocots (tougher than dicots foliages), at about 2.91 Ma (between members B and C) and at 2.32 Ma (between members E and F). These two events are separated by an inverse trend at about 2.53 Ma (between members C and D). Some of these variations, such as between members E and F are supported by the enamel carbon isotopic composition of herbivorous mammals and with paleovegetation evidence.


Asunto(s)
Dieta , Diente Molar/ultraestructura , Papio/fisiología , Theropithecus/fisiología , Animales , Evolución Biológica , Isótopos de Carbono/análisis , Etiopía , Extinción Biológica , Fósiles , Herbivoria , Diente Molar/química , Papio/anatomía & histología , Theropithecus/anatomía & histología
20.
Nat Commun ; 6: 6264, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25710445

RESUMEN

According to molecular data, hippopotamuses and cetaceans form a clade excluding other extant cetartiodactyls. Despite a wealth of spectacular specimens documenting cetacean evolution, this relationship remains poorly substantiated by the fossil record. Indeed, the evolutionary path leading from the hippo-cetacean ancestor to Hippopotamidae is plagued by missing fossil data and phylogenetic uncertainties. Only an origination within the extinct anthracotheres is compatible with molecular results, substantial filling of phyletic gaps and recent discoveries of early Miocene hippopotamids. Yet, the anthracothere stock that gave rise to Hippopotamidae has not been identified. Consequently, recent phylogenetic accounts do not properly integrate the anthracotheriid hypothesis, and relate Hippopotamidae to a stretched ghost lineage and/or close to Suina. Here we describe a new anthracothere from Lokone (Kenya) that unambiguously roots the Hippopotamidae into a well-identified group of bothriodontines, the first large mammals to invade Africa. The hippos are deeply anchored into the African Paleogene.


Asunto(s)
Artiodáctilos/genética , Evolución Biológica , Fósiles , Animales , Mandíbula , Diente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA