Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Biol Chem ; 300(5): 107243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556086

RESUMEN

Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4ß4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.


Asunto(s)
Proteínas Bacterianas , Betaproteobacteria , Ácido Graso Desaturasas , Estigmasterol , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Molibdeno/química , Estigmasterol/metabolismo , Betaproteobacteria/enzimología , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Hidroxilación/genética , Flavinas/metabolismo
2.
Microb Cell Fact ; 23(1): 30, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245746

RESUMEN

BACKGROUND: The global prevalence of vitamin D (VitD) deficiency associated with numerous acute and chronic diseases has led to strategies to improve the VitD status through dietary intake of VitD-fortified foods and VitD supplementation. In this context, the circulating form of VitD3 (cholecalciferol) in the human body, 25-hydroxy-VitD3 (calcifediol, 25OHVitD3), has a much higher efficacy in improving the VitD status, which has motivated researchers to develop methods for its effective and sustainable synthesis. Conventional monooxygenase-/peroxygenase-based biocatalytic platforms for the conversion of VitD3 to value-added 25OHVitD3 are generally limited by a low selectivity and yield, costly reliance on cyclodextrins and electron donor systems, or by the use of toxic co-substrates. RESULTS: In this study, we used a whole-cell approach for biocatalytic 25OHVitD3 synthesis, in which a molybdenum-dependent steroid C25 dehydrogenase was produced in the denitrifying bacterium Thauera aromatica under semi-aerobic conditions, where the activity of the enzyme remained stable. This enzyme uses water as a highly selective VitD3 hydroxylating agent and is independent of an electron donor system. High density suspensions of resting cells producing steroid C25 dehydrogenase catalysed the conversion of VitD3 to 25OHVitD3 using either O2 via the endogenous respiratory chain or externally added ferricyanide as low cost electron acceptor. The maximum 25OHVitD3 titer achieved was 1.85 g L-1 within 50 h with a yield of 99%, which is 2.2 times higher than the highest reported value obtained with previous biocatalytic systems. In addition, we developed a simple method for the recycling of the costly VitD3 solubiliser cyclodextrin, which could be reused for 10 reaction cycles without a significant loss of quality or quantity. CONCLUSIONS: The established steroid C25 dehydrogenase-based whole-cell system for the value-adding conversion of VitD3 to 25OHVitD3 offers a number of advantages in comparison to conventional oxygenase-/peroxygenase-based systems including its high selectivity, independence from an electron donor system, and the higher product titer and yield. Together with the established cyclodextrin recycling procedure, the established system provides an attractive platform for large-scale 25OHVitD3 synthesis.


Asunto(s)
Ciclodextrinas , Deficiencia de Vitamina D , Vitamina D/análogos & derivados , Humanos , Calcifediol , Molibdeno , Colecalciferol , Vitaminas , Esteroides
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583996

RESUMEN

The microbial production of methane from organic matter is an essential process in the global carbon cycle and an important source of renewable energy. It involves the syntrophic interaction between methanogenic archaea and bacteria that convert primary fermentation products such as fatty acids to the methanogenic substrates acetate, H2, CO2, or formate. While the concept of syntrophic methane formation was developed half a century ago, the highly endergonic reduction of CO2 to methane by electrons derived from ß-oxidation of saturated fatty acids has remained hypothetical. Here, we studied a previously noncharacterized membrane-bound oxidoreductase (EMO) from Syntrophus aciditrophicus containing two heme b cofactors and 8-methylmenaquinone as key redox components of the redox loop-driven reduction of CO2 by acyl-coenzyme A (CoA). Using solubilized EMO and proteoliposomes, we reconstituted the entire electron transfer chain from acyl-CoA to CO2 and identified the transfer from a high- to a low-potential heme b with perfectly adjusted midpoint potentials as key steps in syntrophic fatty acid oxidation. The results close our gap of knowledge in the conversion of biomass into methane and identify EMOs as key players of ß-oxidation in (methyl)menaquinone-containing organisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deltaproteobacteria/metabolismo , Ácidos Grasos/metabolismo , Metano/metabolismo , Acetatos/metabolismo , Acilcoenzima A/metabolismo , Archaea/metabolismo , Transporte de Electrón/fisiología , Fermentación/fisiología , Formiatos/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo
4.
J Biol Chem ; 297(4): 101105, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34425106

RESUMEN

The degradation of cholesterol and related steroids by microbes follows fundamentally different strategies in aerobic and anaerobic environments. In anaerobic bacteria, the primary C26 of the isoprenoid side chain is hydroxylated without oxygen via a three-step cascade: (i) water-dependent hydroxylation at the tertiary C25, (ii) ATP-dependent dehydration to form a subterminal alkene, and (iii) water-dependent hydroxylation at the primary C26 to form an allylic alcohol. However, the enzymes involved in the ATP-dependent dehydration have remained unknown. Here, we isolated an ATP-dependent 25-hydroxy-steroid kinase (25-HSK) from the anaerobic bacterium Sterolibacterium denitrificans. This highly active enzyme preferentially phosphorylated the tertiary C25 of steroid alcohols, including metabolites of cholesterol and sitosterol degradation or 25-OH-vitamin D3. Kinetic data were in agreement with a sequential mechanism via a ternary complex. Remarkably, 25-HSK readily catalyzed the formation of γ-(18O)2-ATP from ADP and the C25-(18O)2-phosphoester. The observed full reversibility of 25-HSK with an equilibrium constant below one can be rationalized by an unusual high phosphoryl transfer potential of tertiary steroid C25-phosphoesters, which is ≈20 kJ mol-1 higher than that of standard sugar phosphoesters and even slightly greater than the ß,γ-phosphoanhydride of ATP. In summary, 25-HSK plays an essential role in anaerobic bacterial degradation of zoo- and phytosterols and shows only little similarity to known phosphotransferases.


Asunto(s)
Proteínas Bacterianas/química , Betaproteobacteria/enzimología , Colesterol/química , Fosfotransferasas/química , Sitoesteroles/química , Proteínas Bacterianas/metabolismo , Colesterol/metabolismo , Oxidación-Reducción , Fosfotransferasas/metabolismo , Sitoesteroles/metabolismo
5.
Environ Microbiol ; 24(7): 3181-3194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35437936

RESUMEN

Quaternary carbon-containing compounds exist in natural and fossil oil-derived products and are used in chemical and pharmaceutical applications up to industrial scale. Due to the inaccessibility of the quaternary carbon atom for a direct oxidative or reductive attack, they are considered as persistent in the environment. Here, we investigated the unknown degradation of the quaternary carbon-containing model compound pivalate (2,2-dimethyl-propionate) in the denitrifying bacterium Thauera humireducens strain PIV-1 (formerly Thauera pivalivorans). We provide multiple evidence for a pathway comprising the activation to pivalyl-CoA and the carbon skeleton rearrangement to isovaleryl-CoA. Subsequent reactions proceed similar to the catabolic leucine degradation pathway such as the carboxylation to 3-methylglutaconyl-CoA and the cleavage of 3-methyl-3-hydroxyglutaryl-CoA to acetyl-CoA and acetoacetate. The completed genome of Thauera humireducens strain PIV-1 together with proteomic data was used to identify pivalate-upregulated gene clusters including genes putatively encoding pivalate CoA ligase and adenosylcobalamin-dependent pivalyl-CoA mutase. A pivalate-induced gene encoding a putative carboxylic acid CoA ligase was heterologously expressed, and its highly enriched product exhibited pivalate CoA ligase activity. The results provide the first experimental insights into the biodegradation pathway of a quaternary carbon-containing model compound that serves as a blueprint for the degradation of related quaternary carbon-containing compounds.


Asunto(s)
Proteómica , Thauera , Anaerobiosis , Carbono/metabolismo , Ligasas/metabolismo , Thauera/genética
6.
Environ Microbiol ; 24(12): 6411-6425, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306376

RESUMEN

Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.


Asunto(s)
Bacterias , Thauera , Plásmidos/genética , Secuencia de Bases , Bacterias/genética , Farmacorresistencia Microbiana , Antibacterianos/farmacología , Rhodocyclaceae/genética
7.
Proc Natl Acad Sci U S A ; 116(6): 2259-2264, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674680

RESUMEN

Reversible biological electron transfer usually occurs between redox couples at standard redox potentials ranging from +0.8 to -0.5 V. Dearomatizing benzoyl-CoA reductases (BCRs), key enzymes of the globally relevant microbial degradation of aromatic compounds at anoxic sites, catalyze a biological Birch reduction beyond the negative limit of this redox window. The structurally characterized BamBC subunits of class II BCRs accomplish benzene ring reduction at an active-site tungsten cofactor; however, the mechanism and components involved in the energetic coupling of endergonic benzene ring reduction have remained hypothetical. We present a 1-MDa, membrane-associated, Bam[(BC)2DEFGHI]2 complex from the anaerobic bacterium Geobacter metallireducens harboring 4 tungsten, 4 zinc, 2 selenocysteines, 6 FAD, and >50 FeS cofactors. The results suggest that class II BCRs catalyze electron transfer to the aromatic ring, yielding a cyclic 1,5-dienoyl-CoA via two flavin-based electron bifurcation events. This work expands our knowledge of energetic couplings in biology by high-molecular-mass electron bifurcating machineries.


Asunto(s)
Benceno/metabolismo , Enzimas/metabolismo , Geobacter/metabolismo , Metaloproteínas/metabolismo , Complejos Multiproteicos/metabolismo , Oxidación-Reducción , Transporte Biológico , Catálisis , Dinitrocresoles/metabolismo , Transporte de Electrón , Geobacter/ultraestructura , Metales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo
8.
Mol Microbiol ; 114(1): 17-30, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32080908

RESUMEN

Class I benzoyl-CoA reductases (BCRs) are oxygen-sensitive key enzymes in the degradation of monocyclic aromatic compounds in anaerobic prokaryotes. They catalyze the ATP-dependent reductive dearomatization of their substrate to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA). An aromatizing 1,5-dienoyl-CoA oxidase (DCO) activity has been proposed to protect BCRs from oxidative damage, however, the gene and its product involved have not been identified, yet. Here, we heterologously produced a DCO from the hyperthermophilic euryarchaeon Ferroglobus placidus that coupled the oxidation of two 1,5-dienoyl-CoA to benzoyl-CoA to the reduction of O2 to water at 80°C. DCO showed similarities to members of the old yellow enzyme family and contained FMN, FAD and an FeS cluster as cofactors. The O2 -dependent activation of inactive, reduced DCO is assigned to a redox thiol switch at Eo ' = -3 mV. We propose a catalytic cycle in which the active site FMN/disulfide redox centers are reduced by two 1,5-dienoyl-CoA (reductive half-cycle), followed by two consecutive two-electron transfer steps to molecular oxygen via peroxy- and hydroxyflavin intermediates yielding water (oxidative half-cycle). This work identified the enzyme involved in a unique oxygen detoxification process for an oxygen-sensitive catabolic enzyme.


Asunto(s)
Archaeoglobales/metabolismo , Metabolismo Energético/fisiología , Hidroliasas/metabolismo , Hidrocarburos Aromáticos/metabolismo , Oxígeno/metabolismo , Archaeoglobales/enzimología , Archaeoglobales/genética , Dominio Catalítico/fisiología , Disulfuros/metabolismo , Flavinas/metabolismo , Hidroliasas/genética , Hidrólisis , Oxidación-Reducción
9.
Chembiochem ; 22(22): 3173-3177, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34555236

RESUMEN

The biologically important, FAD-containing acyl-coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti-1,2-elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4-elimination at C3 and C6 of cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA) to cyclohex-1,5-diene-1-carboxyl-CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl-CoA. Based on high-resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD-N5 to favor the biologically relevant C3,C6- over the C3,C4-dehydrogenation activity. The C1,C2-dehydrogenation activity was regained by structure-inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3-diene building blocks.


Asunto(s)
Acil-CoA Deshidrogenasas/metabolismo , Alcadienos/metabolismo , Acil-CoA Deshidrogenasas/química , Alcadienos/química , Biocatálisis , Modelos Moleculares , Estructura Molecular
10.
BMC Microbiol ; 21(1): 50, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593288

RESUMEN

BACKGROUND: Degradation of acetone by aerobic and nitrate-reducing bacteria can proceed via carboxylation to acetoacetate and subsequent thiolytic cleavage to two acetyl residues. A different strategy was identified in the sulfate-reducing bacterium Desulfococcus biacutus that involves formylation of acetone to 2-hydroxyisobutyryl-CoA. RESULTS: Utilization of short-chain ketones (acetone, butanone, 2-pentanone and 3-pentanone) and isopropanol by the sulfate reducer Desulfosarcina cetonica was investigated by differential proteome analyses and enzyme assays. Two-dimensional protein gel electrophoresis indicated that D. cetonica during growth with acetone expresses enzymes homologous to those described for Desulfococcus biacutus: a thiamine diphosphate (TDP)-requiring enzyme, two subunits of a B12-dependent mutase, and a NAD+-dependent dehydrogenase. Total proteomics of cell-free extracts confirmed these results and identified several additional ketone-inducible proteins. Acetone is activated, most likely mediated by the TDP-dependent enzyme, to a branched-chain CoA-ester, 2-hydroxyisobutyryl-CoA. This compound is linearized to 3-hydroxybutyryl-CoA by a coenzyme B12-dependent mutase followed by oxidation to acetoacetyl-CoA by a dehydrogenase. Proteomic analysis of isopropanol- and butanone-grown cells revealed the expression of a set of enzymes identical to that expressed during growth with acetone. Enzyme assays with cell-free extract of isopropanol- and butanone-grown cells support a B12-dependent isomerization. After growth with 2-pentanone or 3-pentanone, similar protein patterns were observed in cell-free extracts as those found after growth with acetone. CONCLUSIONS: According to these results, butanone and isopropanol, as well as the two pentanone isomers, are degraded by the same enzymes that are used also in acetone degradation. Our results indicate that the degradation of several short-chain ketones appears to be initiated by TDP-dependent formylation in sulfate-reducing bacteria.


Asunto(s)
2-Propanol/metabolismo , Acetona/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Cetonas/metabolismo , Sulfatos/metabolismo , 2-Propanol/farmacología , Deltaproteobacteria/efectos de los fármacos , Deltaproteobacteria/crecimiento & desarrollo , Cetonas/química , Oxidación-Reducción , Proteoma , Proteómica/métodos
11.
Angew Chem Int Ed Engl ; 60(1): 424-431, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32929873

RESUMEN

We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Šresolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.

12.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220846

RESUMEN

The degradation of the xenobiotic phthalic acid esters by microorganisms is initiated by the hydrolysis to the respective alcohols and ortho-phthalate (hereafter, phthalate). In aerobic bacteria and fungi, oxygenases are involved in the conversion of phthalate to protocatechuate, the substrate for ring-cleaving dioxygenases. In contrast, anaerobic bacteria activate phthalate to the extremely unstable phthaloyl-coenzyme A (CoA), which is decarboxylated by oxygen-sensitive UbiD-like phthaloyl-CoA decarboxylase (PCD) to the central benzoyl-CoA intermediate. Here, we demonstrate that the facultatively anaerobic, denitrifying Thauera chlorobenzoica 3CB-1 and Aromatoleum evansii KB740 strains use phthalate as a growth substrate under aerobic and denitrifying conditions. In vitro assays with extracts from cells grown aerobically with phthalate demonstrated the succinyl-CoA-dependent activation of phthalate followed by decarboxylation to benzoyl-CoA. In T. chlorobenzoica 3CB-1, we identified PCD as a highly abundant enzyme in both aerobically and anaerobically grown cells, whereas genes for phthalate dioxygenases are missing in the genome. PCD was highly enriched from aerobically grown T. chlorobenzoica cells and was identified as an identical enzyme produced under denitrifying conditions. These results indicate that the initial steps of aerobic phthalate degradation in denitrifying bacteria are accomplished by the anaerobic enzyme inventory, whereas the benzoyl-CoA oxygenase-dependent pathway is used for further conversion to central intermediates. Such a hybrid pathway requires intracellular oxygen homeostasis at concentrations low enough to prevent PCD inactivation but sufficiently high to supply benzoyl-CoA oxygenase with its cosubstrate.IMPORTANCE Phthalic acid esters (PAEs) are industrially produced on a million-ton scale per year and are predominantly used as plasticizers. They are classified as environmentally relevant xenobiotics with a number of adverse health effects, including endocrine-disrupting activity. Biodegradation by microorganisms is considered the most effective process to eliminate PAEs from the environment. It is usually initiated by the hydrolysis of PAEs to alcohols and o-phthalic acid. Degradation of o-phthalic acid fundamentally differs in aerobic and anaerobic microorganisms; aerobic phthalate degradation heavily depends on dioxygenase-dependent reactions, whereas anaerobic degradation employs the oxygen-sensitive key enzyme phthaloyl-CoA decarboxylase. We demonstrate that aerobic phthalate degradation in facultatively anaerobic bacteria proceeds via a previously unknown hybrid degradation pathway involving oxygen-sensitive and oxygen-dependent key enzymes. Such a strategy is essential for facultatively anaerobic bacteria that frequently switch between oxic and anoxic environments.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desnitrificación , Ácidos Ftálicos/metabolismo , Rhodocyclaceae/metabolismo , Aerobiosis , Bacterias/metabolismo , Rhodocyclaceae/enzimología , Thauera/enzimología , Thauera/metabolismo
13.
J Biol Chem ; 293(26): 10264-10274, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29769313

RESUMEN

Class I benzoyl-CoA (BzCoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds. They catalyze the ATP-dependent reduction of the central BzCoA intermediate and analogues of it to conjugated cyclic 1,5-dienoyl-CoAs probably by a radical-based, Birch-like reduction mechanism. Discovered in 1995, the enzyme from the denitrifying bacterium Thauera aromatica (BCRTar) has so far remained the only isolated and biochemically accessible BCR, mainly because BCRs are extremely labile, and their heterologous production has largely failed so far. Here, we describe a platform for the heterologous expression of the four structural genes encoding a designated 3-methylbenzoyl-CoA reductase from the related denitrifying species Thauera chlorobenzoica (MBRTcl) in Escherichia coli This reductase represents the prototype of a distinct subclass of ATP-dependent BCRs that were proposed to be involved in the degradation of methyl-substituted BzCoA analogues. The recombinant MBRTcl had an αßγδ-subunit architecture, contained three low-potential [4Fe-4S] clusters, and was highly oxygen-labile. It catalyzed the ATP-dependent reductive dearomatization of BzCoA with 2.3-2.8 ATPs hydrolyzed per two electrons transferred and preferentially dearomatized methyl- and chloro-substituted analogues in meta- and para-positions. NMR analyses revealed that 3-methylbenzoyl-CoA is regioselectively reduced to 3-methyl-1,5-dienoyl-CoA. The unprecedented reductive dechlorination of 4-chloro-BzCoA to BzCoA probably via HCl elimination from a reduced intermediate allowed for the previously unreported growth of T. chlorobenzoica on 4-chlorobenzoate. The heterologous expression platform established in this work enables the production, isolation, and characterization of bacterial and archaeal BCR and BCR-like radical enzymes, for many of which the function has remained unknown.


Asunto(s)
Benzoatos/química , Benzoatos/metabolismo , Biocatálisis , Desnitrificación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Thauera/enzimología , Adenosina Trifosfato/metabolismo , Peso Molecular , Filogenia , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Thauera/metabolismo
14.
Mol Microbiol ; 108(6): 614-626, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29645305

RESUMEN

Xenobiotic phthalates are industrially produced on the annual million ton scale. The oxygen-independent enzymatic reactions involved in anaerobic phthalate degradation have only recently been elucidated. In vitro assays suggested that phthalate is first activated to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report the heterologous production and characterization of the enzyme initiating anaerobic phthalate degradation from 'Aromatoleum aromaticum': a highly specific succinyl-CoA:phthalate CoA transferase (SPT, class III CoA transferase). Phthaloyl-CoA formed by SPT accumulated only to sub-micromolar concentrations due to the extreme lability of the product towards intramolecular substitution with a half-life of around 7 min. Upon addition of excess phthaloyl-CoA decarboxylase (PCD), the combined activity of both enzymes was drastically shifted towards physiologically relevant benzoyl-CoA formation. In conclusion, a massive overproduction of PCD in phthalate-grown cells to concentrations >140 µM was observed that allowed for efficient phthaloyl-CoA conversion at concentrations 250-fold below the apparent Km -value of PCD. The results obtained provide insights into an only recently evolved xenobiotic degradation pathway where a massive cellular overproduction of PCD compensates for the formation of the probably most unstable CoA ester intermediate in biology.


Asunto(s)
Coenzima A/metabolismo , Ácidos Ftálicos/metabolismo , Rhodocyclaceae/enzimología , Xenobióticos/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cinética , Ácidos Ftálicos/química , Filogenia , Rhodocyclaceae/clasificación , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo
15.
Environ Microbiol ; 21(11): 4241-4252, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430028

RESUMEN

Benzoyl-CoA reductases (BCRs) catalyse a key reaction in the anaerobic degradation pathways of monocyclic aromatic substrates, the dearomatization of benzoyl-CoA (BzCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (1,5-dienoyl-CoA) at the negative redox potential limit of diffusible enzymatic substrate/product couples (E°' = -622 mV). A 1-MDa class II BCR complex composed of the BamBCDEGHI subunits has so far only been isolated from the Fe(III)-respiring Geobacter metallireducens. It is supposed to drive endergonic benzene ring reduction at an active site W-pterin cofactor by flavin-based electron bifurcation. Here, we identified multiple copies of putative genes encoding the structural components of a class II BCR in sulfate reducing, Fe(III)-respiring and syntrophic bacteria. A soluble 950 kDa Bam[(BC)2 DEFGHI]2 complex was isolated from extracts of Desulfosarcina cetonica cells grown with benzoate/sulfate. Metal and cofactor analyses together with the identification of conserved binding motifs gave rise to 4 W-pterins, two selenocysteines, six flavin adenine dinucleotides, four Zn, and 48 FeS clusters. The complex exhibited 1,5-dienoyl-CoA-, NADPH- and ferredoxin-dependent oxidoreductase activities. Our results indicate that high-molecular class II BCR metalloenzyme machineries are remarkably conserved in strictly anaerobic bacteria with regard to subunit architecture and cofactor content, but their subcellular localization and electron acceptor preference may differ as a result of adaptations to variable energy metabolisms.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deltaproteobacteria/enzimología , Deltaproteobacteria/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Anaerobiosis , Catálisis , Compuestos Férricos/metabolismo , Geobacter/genética , Redes y Vías Metabólicas , Metaloproteínas/metabolismo , Oxidación-Reducción , Sulfatos/metabolismo
16.
Environ Microbiol ; 21(10): 3601-3612, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31087742

RESUMEN

The complete degradation of the xenobiotic and environmentally harmful phthalate esters is initiated by hydrolysis to alcohols and o-phthalate (phthalate) by esterases. While further catabolism of phthalate has been studied in aerobic and denitrifying microorganisms, the degradation in obligately anaerobic bacteria has remained obscure. Here, we demonstrate a previously overseen growth of the δ-proteobacterium Desulfosarcina cetonica with phthalate/sulphate as only carbon and energy sources. Differential proteome and CoA ester pool analyses together with in vitro enzyme assays identified the genes, enzymes and metabolites involved in phthalate uptake and degradation in D. cetonica. Phthalate is initially activated to the short-lived phthaloyl-CoA by an ATP-dependent phthalate CoA ligase (PCL) followed by decarboxylation to the central intermediate benzoyl-CoA by an UbiD-like phthaloyl-CoA decarboxylase (PCD) containing a prenylated flavin cofactor. Genome/metagenome analyses predicted phthalate degradation capacity also in the sulphate-reducing Desulfobacula toluolica, strain NaphS2, and other δ-proteobacteria. Our results suggest that phthalate degradation proceeds in all anaerobic bacteria via the labile phthaloyl-CoA that is captured and decarboxylated by highly abundant PCDs. In contrast, two alternative strategies have been established for the formation of phthaloyl-CoA, the possibly most unstable CoA ester in biology.


Asunto(s)
Deltaproteobacteria/metabolismo , Ácidos Ftálicos/metabolismo , Sulfatos/metabolismo , Anaerobiosis , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Oxidación-Reducción , Proteoma/metabolismo
17.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29374035

RESUMEN

The denitrifying betaproteobacterium Sterolibacterium denitrificans Chol1S catabolizes steroids such as cholesterol via an oxygen-independent pathway. It involves enzyme reaction sequences described for aerobic cholesterol and bile acid degradation as well as enzymes uniquely found in anaerobic steroid-degrading bacteria. Recent studies provided evidence that in S. denitrificans, the cholest-4-en-3-one intermediate is oxygen-independently oxidized to Δ4-dafachronic acid (C26-oic acid), which is subsequently activated by a substrate-specific acyl-coenzyme A (acyl-CoA) synthetase (ACS). Further degradation was suggested to proceed via unconventional ß-oxidation, where aldolases, aldehyde dehydrogenases, and additional ACSs substitute for classical ß-hydroxyacyl-CoA dehydrogenases and thiolases. Here, we heterologously expressed three cholesterol-induced genes that putatively code for AMP-forming ACSs and characterized two of the products as specific 3ß-hydroxy-Δ5-cholenoyl-CoA (C24-oic acid)- and pregn-4-en-3-one-22-oyl-CoA (C22-oic acid)-forming ACSs, respectively. A third heterologously produced ATP-dependent ACS was inactive with C26-, C24-, or C22-oic-acids but activated 3aα-H-4α-(3'propanoate)-7aß-methylhexahydro-1,5-indanedione (HIP) to HIP-CoA, a rather late intermediate of aerobic cholesterol degradation that still contains the CD rings of the sterane skeleton. This work provides experimental evidence that anaerobic steroid degradation proceeds via numerous alternate CoA-ester-dependent or -independent enzymatic reaction sequences as a result of aldolytic side chain and hydrolytic sterane ring C-C bond cleavages. The aldolytic side chain degradation pathway comprising highly exergonic ACSs and aldehyde dehydrogenases is considered to be essential for driving the unfavorable oxygen-independent C26 hydroxylation forward.IMPORTANCE The biological degradation of ubiquitously abundant steroids is hampered by their low solubility and the presence of two quaternary carbon atoms. The degradation of cholesterol by aerobic Actinobacteria has been studied in detail for more than 30 years and involves a number of oxygenase-dependent reactions. In contrast, much less is known about the oxygen-independent degradation of steroids in denitrifying bacteria. In the cholesterol-degrading anaerobic model organism Sterolibacterium denitrificans Chol1S, initial evidence has been obtained that steroid degradation proceeds via numerous alternate coenzyme A (CoA)-ester-dependent/independent reaction sequences. Here, we describe the heterologous expression of three highly specific and characteristic acyl-CoA synthetases, two of which play key roles in the degradation of the side chain, whereas a third one is specifically involved in the B ring degradation. The results obtained shed light into oxygen-independent steroid degradation comprising more than 40 enzymatic reactions.


Asunto(s)
Proteínas Bacterianas/genética , Colesterol/metabolismo , Coenzima A Ligasas/genética , Rhodocyclaceae/fisiología , Anaerobiosis , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/metabolismo , Rhodocyclaceae/genética
18.
Chemistry ; 24(48): 12505-12508, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29932261

RESUMEN

Birch reductions of aromatic hydrocarbons by means of single-electron-transfer steps depend on alkali metals, ammonia, and cryogenic reaction conditions. In contrast, 2-naphthoyl-coenzyme A (2-NCoA) and 5,6-dihydro-2-NCoA (5,6-DHNCoA) reductases catalyze two two-electron reductions of the naphthoyl-ring system to tetrahydronaphthoyl-CoA at ambient temperature. Using a number of substrate analogues, we provide evidence for a Meisenheimer complex-analogous intermediate during 2-NCoA reduction, whereas the subsequent reduction of 5,6-dihydro-2-NCoA is suggested to proceed via an unprecedented cationic transition state. Using vibrational circular dichroism (VCD) spectroscopy, we demonstrate that both enzymatic reductions are highly stereoselective in D2 O, providing an enantioselective pathway to products inaccessible by Birch reduction. Moreover, we demonstrate the power of VCD spectroscopy to determine the absolute configuration of isotopically engendered alicyclic stereocenters.


Asunto(s)
Coenzima A/química , Naftalenos/química , Oxidorreductasas/química , Catálisis , Dicroismo Circular/métodos , Oxidación-Reducción , Estereoisomerismo , Tetrahidronaftalenos/química
19.
J Am Chem Soc ; 139(41): 14488-14500, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28918628

RESUMEN

Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH-] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.


Asunto(s)
Benceno/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Tungsteno/metabolismo , Acilcoenzima A/metabolismo , Dominio Catalítico , Transporte de Electrón , Geobacter/enzimología , Histidina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Protones , Pterinas/metabolismo , Teoría Cuántica
20.
Environ Microbiol ; 19(9): 3734-3744, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28752942

RESUMEN

The degradation of the industrially produced and environmentally relevant phthalate esters by microorganisms is initiated by the hydrolysis to alcohols and phthalate (1,2-dicarboxybenzene). In the absence of oxygen the further degradation of phthalate proceeds via activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report on the first purification and characterization of a phthaloyl-CoA decarboxylase (PCD) from the denitrifying Thauera chlorobenzoica. Hexameric PCD belongs to the UbiD-family of (de)carboxylases and contains prenylated FMN (prFMN), K+ and, unlike other UbiD-like enzymes, Fe2+ as cofactors. The latter is suggested to be involved in oxygen-independent electron-transfer during oxidative prFMN maturation. Either oxidation to the Fe3+ -state in air or removal of K+ by desalting resulted in >92% loss of both, prFMN and decarboxylation activity suggesting the presence of an active site prFMN/Fe2+ /K+ -complex in PCD. The PCD-catalysed reaction was essentially irreversible: neither carboxylation of benzoyl-CoA in the presence of 2 M bicarbonate, nor an isotope exchange of phthaloyl-CoA with 13 C-bicarbonate was observed. PCD differs in many aspects from prFMN-containing UbiD-like decarboxylases and serves as a biochemically accessible model for the large number of UbiD-like (de)carboxylases that play key roles in the anaerobic degradation of environmentally relevant aromatic pollutants.


Asunto(s)
Acilcoenzima A/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Carboxiliasas/aislamiento & purificación , Ácidos Ftálicos/metabolismo , Thauera/enzimología , Secuencia de Aminoácidos , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Catálisis , Transporte de Electrón/fisiología , Flavinas/química , Hierro/química , Oxidación-Reducción , Oxígeno/metabolismo , Potasio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA