Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 34(1): 55-66, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25398910

RESUMEN

Recognition of extracellular peptides by plasma membrane-localized receptor proteins is commonly used in signal transduction. In plants, very little is known about how extracellular peptides are processed and activated in order to allow recognition by receptors. Here, we show that induction of cell death in planta by a secreted plant protein GRIM REAPER (GRI) is dependent on the activity of the type II metacaspase METACASPASE-9. GRI is cleaved by METACASPASE-9 in vitro resulting in the release of an 11 amino acid peptide. This peptide bound in vivo to the extracellular domain of the plasma membrane-localized, atypical leucine-rich repeat receptor-like kinase POLLEN-SPECIFIC RECEPTOR-LIKE KINASE 5 (PRK5) and was sufficient to induce oxidative stress/ROS-dependent cell death. This shows a signaling pathway in plants from processing and activation of an extracellular protein to recognition by its receptor.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Caspasas/metabolismo , Estrés Oxidativo/fisiología , Péptidos/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Caspasas/genética , Muerte Celular/fisiología , Membrana Celular/genética , Membrana Celular/metabolismo , Péptidos/genética , Unión Proteica/fisiología , Proteínas Quinasas/genética , Estructura Terciaria de Proteína
2.
New Phytol ; 217(4): 1551-1565, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29243818

RESUMEN

Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.


Asunto(s)
Caspasas/metabolismo , Populus/enzimología , Árboles/enzimología , Madera/enzimología , Secuencia de Aminoácidos , Caspasas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Familia de Multigenes , Péptidos/química , Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteómica , Xilema/citología , Xilema/genética , Xilema/metabolismo
3.
Plant J ; 75(4): 685-98, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23647338

RESUMEN

Polyamines are small polycationic amines that are widespread in living organisms. Thermospermine, synthesized by thermospermine synthase ACAULIS5 (ACL5), was recently shown to be an endogenous plant polyamine. Thermospermine is critical for proper vascular development and xylem cell specification, but it is not known how thermospermine homeostasis is controlled in the xylem. We present data in the Populus model system supporting the existence of a negative feedback control of thermospermine levels in stem xylem tissues, the main site of thermospermine biosynthesis. While over-expression of the ACL5 homologue in Populus, POPACAULIS5, resulted in strong up-regulation of ACL5 expression and thermospermine accumulation in leaves, the corresponding levels in the secondary xylem tissues of the stem were similar or lower than those in the wild-type. POPACAULIS5 over-expression had a negative effect on accumulation of indole-3-acetic acid, while exogenous auxin had a positive effect on POPACAULIS5 expression, thus promoting thermospermine accumulation. Further, over-expression of POPACAULIS5 negatively affected expression of the class III homeodomain leucine zipper (HD-Zip III) transcription factor gene PttHB8, a homologue of AtHB8, while up-regulation of PttHB8 positively affected POPACAULIS5 expression. These results indicate that excessive accumulation of thermospermine is prevented by a negative feedback control of POPACAULIS5 transcript levels through suppression of indole-3-acetic acid levels, and that PttHB8 is involved in the control of POPACAULIS5 expression. We propose that this negative feedback loop functions to maintain steady-state levels of thermospermine, which is required for proper xylem development, and that it is dependent on the presence of high concentrations of endogenous indole-3-acetic acid, such as those present in the secondary xylem tissues.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Populus/metabolismo , Espermina/análogos & derivados , Secuencia de Aminoácidos , Proteínas de Arabidopsis/genética , Secuencia de Bases , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/farmacología , Leucina Zippers/genética , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Reguladores del Crecimiento de las Plantas/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Populus/citología , Populus/genética , Populus/crecimiento & desarrollo , Análisis de Secuencia de ADN , Espermina/metabolismo , Árboles , Regulación hacia Arriba , Madera/citología , Madera/genética , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/citología , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
4.
New Phytol ; 200(2): 498-510, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23834670

RESUMEN

Cell death of xylem elements is manifested by rupture of the tonoplast and subsequent autolysis of the cellular contents. Metacaspases have been implicated in various forms of plant cell death but regulation and execution of xylem cell death by metacaspases remains unknown. Analysis of the type II metacaspase gene family in Arabidopsis thaliana supported the function of METACASPASE 9 (AtMC9) in xylem cell death. Progression of xylem cell death was analysed in protoxylem vessel elements of 3-d-old atmc9 mutant roots using reporter gene analysis and electron microscopy. Protoxylem cell death was normally initiated in atmc9 mutant lines, but detailed electron microscopic analyses revealed a role for AtMC9 in clearance of the cell contents post mortem, that is after tonoplast rupture. Subcellular localization of fluorescent AtMC9 reporter fusions supported a post mortem role for AtMC9. Further, probe-based activity profiling suggested a function of AtMC9 on activities of papain-like cysteine proteases. Our data demonstrate that the function of AtMC9 in xylem cell death is to degrade vessel cell contents after vacuolar rupture. We further provide evidence on a proteolytic cascade in post mortem autolysis of xylem vessel elements and suggest that AtMC9 is part of this cascade.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Caspasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Caspasas/genética , Muerte Celular , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteolisis , Pseudomonas syringae/patogenicidad , Proteínas Recombinantes de Fusión , Vacuolas/metabolismo , Xilema/genética , Xilema/ultraestructura
5.
J Exp Bot ; 64(7): 2005-16, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23630326

RESUMEN

The molybdenum cofactor (Moco) is the active compound at the catalytic site of molybdenum enzymes. Moco is synthesized by a conserved four-step pathway involving six proteins in Arabidopsis thaliana. Bimolecular fluorescence complementation was used to study the subcellular localization and interaction of those proteins catalysing Moco biosynthesis. In addition, the independent split-luciferase approach permitted quantification of the strength of these protein-protein interactions in vivo. Moco biosynthesis starts in mitochondria where two proteins undergo tight interaction. All subsequent steps were found to proceed in the cytosol. Here, the heterotetrameric enzyme molybdopterin synthase (catalysing step two of Moco biosynthesis) and the enzyme molybdenum insertase, which finalizes Moco formation, were found to undergo tight protein interaction as well. This cytosolic multimeric protein complex is dynamic as the small subunits of molybdopterin synthase are known to go on and off in order to become recharged with sulphur. These small subunits undergo a tighter protein contact within the enzyme molybdopterin synthase as compared with their interaction with the sulphurating enzyme. The forces of each of these protein contacts were quantified and provided interaction factors. To confirm the results, in vitro experiments using a technique combining cross-linking and label transfer were conducted. The data presented allowed the outline of the first draft of an interaction matrix for proteins within the pathway of Moco biosynthesis where product-substrate flow is facilitated through micro-compartmentalization in a cytosolic protein complex. The protected sequestering of fragile intermediates and formation of the final product are achieved through a series of direct protein interactions of variable strength.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Coenzimas/metabolismo , Metaloproteínas/metabolismo , Pteridinas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Cofactores de Molibdeno , Unión Proteica , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo
6.
J Exp Bot ; 63(3): 1081-94, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22213814

RESUMEN

Evolutionary, as well as genetic, evidence suggests that vascular development evolved originally as a cell death programme that allowed enhanced movement of water in the extinct protracheophytes, and that secondary wall formation in the water-conducting cells evolved afterwards, providing mechanical support for effective long-distance transport of water. The extant vascular plants possess a common regulatory network to coordinate the different phases of xylem maturation, including secondary wall formation, cell death, and finally autolysis of the cell contents, by the action of recently identified NAC domain transcription factors. Consequently, xylem cell death is an inseparable part of the xylem maturation programme, making it difficult to uncouple cell death mechanistically from secondary wall formation, and thus identify the key factors specifically involved in regulation of cell death. Current knowledge suggests that the necessary components for xylem cell death are produced early during xylem differentiation, and cell death is prevented through the action of inhibitors and storage of hydrolytic enzymes in inactive forms in compartments such as the vacuole. Bursting of the central vacuole triggers autolytic hydrolysis of the cell contents, which ultimately leads to cell death. This cascade of events varies between the different xylem cell types. The water-transporting tracheary elements rely on a rapid cell death programme, with hydrolysis of cell contents taking place for the most part, if not entirely, after vacuolar bursting, while the xylem fibres disintegrate cellular contents at a slower pace, well before cell death. This review includes a detailed description of cell morphology, function of plant growth regulators, such as ethylene and thermospermine, and the action of hydrolytic nucleases and proteases during cell death of the different xylem cell types.


Asunto(s)
Xilema/citología , Muerte Celular/genética , Muerte Celular/fisiología , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Xilema/metabolismo
7.
Plant J ; 58(2): 260-74, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19175765

RESUMEN

Maturation of the xylem elements involves extensive deposition of secondary cell-wall material and autolytic processes resulting in cell death. We describe here a unique type of cell-death program in xylem fibers of hybrid aspen (Populus tremula x P. tremuloides) stems, including gradual degradative processes in both the nucleus and cytoplasm concurrently with the phase of active cell-wall deposition. Nuclear DNA integrity, as determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) and Comet (single-cell gel electrophoresis) assays, was compromised early during fiber maturation. In addition, degradation of the cytoplasmic contents, as detected by electron microscopy of samples fixed by high-pressure freezing/freeze substitution (HPF-FS), was gradual and resulted in complete loss of the cytoplasmic contents well before the loss of vacuolar integrity, which is considered to be the moment of death. This type of cell death differs significantly from that seen in xylem vessels. The loss of vacuolar integrity, which is thought to initiate cell degradative processes in the xylem vessels, is one of the last processes to occur before the final autolysis of the remaining cell contents in xylem fibers. High-resolution microarray analysis in the vascular tissues of Populus stem, combined with in silico analysis of publicly available data repositories, suggests the involvement of several previously uncharacterized transcription factors, ethylene, sphingolipids and light signaling as well as autophagy in the control of fiber cell death.


Asunto(s)
Muerte Celular , Tallos de la Planta/metabolismo , Populus/metabolismo , Xilema/metabolismo , Pared Celular/metabolismo , Ensayo Cometa , ADN de Plantas/análisis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Etiquetado Corte-Fin in Situ , Análisis por Micromatrices , Microscopía Electrónica de Transmisión , Tallos de la Planta/citología , Tallos de la Planta/genética , Populus/genética , Vacuolas/metabolismo
8.
Front Plant Sci ; 11: 601858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304375

RESUMEN

In the primary root and young hypocotyl of Arabidopsis, ACAULIS5 promotes translation of SUPPRESSOR OF ACAULIS51 (SAC51) and thereby inhibits cytokinin biosynthesis and vascular cell division. In this study, the relationships between ACAULIS5, SAC51 and cytokinin biosynthesis were investigated during secondary growth of Populus stems. Overexpression of ACAULIS5 from the constitutive 35S promoter in hybrid aspen (Populus tremula × Populus tremuloides) trees suppressed the expression level of ACAULIS5, which resulted in low levels of the physiologically active cytokinin bases as well as their direct riboside precursors in the transgenic lines. Low ACAULIS5 expression and low cytokinin levels of the transgenic trees coincided with low cambial activity of the stem. ACAULIS5 therefore, contrary to its function in young seedlings in Arabidopsis, stimulates cytokinin accumulation and cambial activity during secondary growth of the stem. This function is not derived from maturing secondary xylem tissues as transgenic suppression of ACAULIS5 levels in these tissues did not influence secondary growth. Interestingly, evidence was obtained for increased activity of the anticlinal division of the cambial initials under conditions of low ACAULIS5 expression and low cytokinin accumulation. We propose that ACAULIS5 integrates auxin and cytokinin signaling to promote extensive secondary growth of tree stems.

9.
Curr Biol ; 30(3): 455-464.e7, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31956028

RESUMEN

Plant organ growth is widely accepted to be determined by cell division and cell expansion, but, unlike that in animals, the contribution of cell elimination has rarely been recognized. We investigated this paradigm during Arabidopsis lateral root formation, when the lateral root primordia (LRP) must traverse three overlying cell layers within the parent root. A subset of LRP-overlying cells displayed the induction of marker genes for cell types undergoing developmental cell death, and their cell death was detected by electron, confocal, and light sheet microscopy techniques. LRP growth was delayed in cell-death-deficient mutants lacking the positive cell death regulator ORESARA1/ANAC092 (ORE1). LRP growth was restored in ore1-2 knockout plants by genetically inducing cell elimination in cells overlying the LRP or by physically killing LRP-overlying cells by ablation with optical tweezers. Our results support that, in addition to previously discovered mechanisms, cell elimination contributes to regulating lateral root emergence.


Asunto(s)
Arabidopsis/fisiología , Muerte Celular , Organogénesis de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/fisiología
10.
Methods Mol Biol ; 1544: 27-36, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28050826

RESUMEN

Histochemical assays of xylem cell death cannot take advantage of the conventional methods for detection of cell death, such as staining with propidium iodide or trypan/Evans blue or the TUNEL staining. This chapter presents two alternative histochemical methods that can be used to detect xylem cell death quickly and reliably using light microscopy. The first method is a viability stain that can be used to detect cell death of different types of xylem elements in basically any plant species. The second method reveals cell death in xylem vessel elements based on their functionality in transport of water and small water-soluble stains.


Asunto(s)
Muerte Celular , Histocitoquímica , Xilema/citología , Xilema/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Transporte Biológico , Supervivencia Celular , Histocitoquímica/métodos , Microscopía Fluorescente
11.
Biol Open ; 5(2): 122-9, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740571

RESUMEN

We uncovered that the level of autophagy in plant cells undergoing programmed cell death determines the fate of the surrounding cells. Our approach consisted of using Arabidopsis thaliana cell cultures capable of differentiating into two different cell types: vascular tracheary elements (TEs) that undergo programmed cell death (PCD) and protoplast autolysis, and parenchymatic non-TEs that remain alive. The TE cell type displayed higher levels of autophagy when expression of the TE-specific METACASPASE9 (MC9) was reduced using RNAi (MC9-RNAi). Misregulation of autophagy in the MC9-RNAi TEs coincided with ectopic death of the non-TEs, implying the existence of an autophagy-dependent intercellular signalling from within the TEs towards the non-TEs. Viability of the non-TEs was restored when AUTOPHAGY2 (ATG2) was downregulated specifically in MC9-RNAi TEs, demonstrating the importance of autophagy in the spatial confinement of cell death. Our results suggest that other eukaryotic cells undergoing PCD might also need to tightly regulate their level of autophagy to avoid detrimental consequences for the surrounding cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA