Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Anal Bioanal Chem ; 414(20): 6177-6186, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35841416

RESUMEN

Monitoring changes in stable oxygen isotope ratios in molecular oxygen allows for studying many fundamental processes in bio(geo)chemistry and environmental sciences. While the measurement of [Formula: see text]O/[Formula: see text]O ratios of [Formula: see text] in gaseous samples can be carried out conveniently and from extracting moderately small aqueous samples for analyses by continuous-flow isotope ratio mass spectrometry (CF-IRMS), oxygen isotope signatures, [Formula: see text]O, could be overestimated by more than 6[Formula: see text] because of interferences from argon in air. Here, we systematically evaluated the extent of such Ar interferences on [Formula: see text]O/[Formula: see text]O ratios of [Formula: see text] for measurements by gas chromatography/IRMS and GasBench/IRMS and propose simple instrumental modifications for improved Ar and [Formula: see text] separation as well as post-measurement correction procedures for obtaining accurate [Formula: see text]O. We subsequently evaluated the consequences of Ar interferences for the quantification of O isotope fractionation in terms of isotope enrichment factors, [Formula: see text], and [Formula: see text]O kinetic isotope effects ([Formula: see text]O KIEs) in samples where [Formula: see text] is consumed and Ar:[Formula: see text] ratios increase steadily and substantially over the course of a reaction. We show that the extent of O isotope fractionation is overestimated only slightly and that this effect is typically smaller than uncertainties originating from the precision of [Formula: see text]O measurements and experimental variability. Ar interferences can become more relevant and bias [Formula: see text] values by more than [Formula: see text] in aqueous samples where fractional [Formula: see text] conversion exceeds 90%. Practically, however, such samples would typically contain less than 25 [Formula: see text]M of [Formula: see text] at ambient temperature, an amount that is close to the method detection limit of [Formula: see text]O/[Formula: see text]O ratio measurement by CF-IRMS.


Asunto(s)
Oxígeno , Agua , Argón , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Isótopos de Oxígeno/análisis
2.
Environ Sci Technol ; 55(10): 6752-6763, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33900746

RESUMEN

Subsurface contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at ordnance production and testing sites is a problem because of the persistence, mobility, and toxicity of RDX and the formation of toxic products under anoxic conditions. While the utility of compound-specific isotope analysis for inferring natural attenuation pathways from stable isotope ratios has been demonstrated, the stable isotope fractionation for RDX reduction by iron-bearing minerals remains unknown. Here, we evaluated N and C isotope fractionation of RDX during reduction by Fe(II) associated with Fe minerals and natural sediments and applied N isotope ratios to the assessment of mineral-catalyzed RDX reduction in a contaminant plume and in sediment columns treated by in situ chemical reduction. Laboratory studies revealed that RDX was reduced to nitroso compounds without denitration and the concomitant ring cleavage. Fe(II)/iron oxide mineral-catalyzed reactions exhibited N isotope enrichment factors, εN, between -6.3±0.3‰ and -8.2±0.2‰, corresponding to an apparent 15N kinetic isotope effect of 1.04-1.05. The observed variations of the δ15N of ∼15‰ in RDX from groundwater samples suggested an extent of reductive transformation of 85% at an ammunition plant. Conversely, we observed masking of N isotope fractionation after RDX reduction in laboratory flow-through systems, which was presumably due to limited accessibility to reactive Fe(II).


Asunto(s)
Sustancias Explosivas , Agua Subterránea , Isótopos , Triazinas
3.
Environ Sci Technol ; 54(9): 5520-5531, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275413

RESUMEN

Ferrous iron-bearing minerals are important reductants in the contaminated subsurface, but their availability for the reduction of anthropogenic pollutants is often limited by competition with other electron acceptors including microorganisms and poor accessibility to Fe(II) in complex hydrogeologic settings. The supply of external electron donors through in situ chemical reduction (ISCR) has been proposed as one remediation approach, but the quantification of pollutant transformation is complicated by the perturbations introduced to the subsurface by ISCR. Here, we evaluate the application of compound specific isotope analysis (CSIA) for monitoring the reduction of 2,4-dinitroanisole (DNAN), a component of insensitive munitions formulations, by mineral-bound Fe(II) generated through ISCR of subsurface material from two field sites. Electron balances from laboratory experiments in batch and column reactors showed that 3.6% to 11% of the total Fe in the sediments was available for the reduction of DNAN and its partially reduced intermediates after dithionite treatment. The extent of DNAN reduction was successfully quantified from its N isotope fractionation measured in the column effluent based on the derivation of a N isotope enrichment factor, εN, derived from a comprehensive series of isotope fractionation experiments with numerous Fe(II)-bearing minerals as well as dithionite-reduced subsurface materials. Our observations illustrate the utility of CSIA as a robust approach to evaluate the success of in situ remediation through abiotic contaminant reduction.


Asunto(s)
Anisoles , Isótopos , Hierro , Oxidación-Reducción , Óxidos
4.
Environ Sci Technol ; 54(7): 3929-3939, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32122119

RESUMEN

Desphenylchloridazon (DPC), the main metabolite of the herbicide chloridazon (CLZ), is more water soluble and persistent than CLZ and frequently detected in water bodies. When assessing DPC transformation in the environment, results can be nonconclusive if based on concentration analysis alone because estimates may be confounded by simultaneous DPC formation from CLZ. This study investigated the fate of DPC by combining concentration-based methods with compound-specific C and N stable isotope analysis (CSIA). Additionally, DPC formation and transformation processes were experimentally deconvolved in a dedicated lysimeter study considering three scenarios. First, surface application of DPC enabled studying its degradation in the absence of CLZ. Here, CSIA provided evidence of two distinct DPC transformation processes: one shows significant changes only in 13C/12C, whereas the other involves changes in both 13C/12C and 15N/14N isotope ratios. Second, surface application of CLZ mimicked a realistic field scenario, showing that during DPC formation, 13C/12C ratios of DPC were depleted in 13C relative to CLZ, while 15N/14N ratios remained constant. Finally, CLZ depth injection simulated preferential flow and demonstrated the importance of the topsoil for retaining DPC. The combination of the lysimeter study with CSIA enabled insights into DPC transformation in the field that are superior to those of studies of concentration trends.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Biodegradación Ambiental , Isótopos
5.
Environ Sci Technol ; 53(5): 2353-2363, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674184

RESUMEN

Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers. Here, we investigated the enzyme specificity of apparent 13C- and 2H-kinetic isotope effects (AKIEs) associated with the dehydrochlorination of γ-HCH (lindane) by two variants of the lindane dehydrochlorinases LinA1 and LinA2. While LinA1 and LinA2 attack γ-HCH at different trans-1,2-diaxial H-C-C-Cl moieties, the observed C and H isotope fractionation was large, typical for bimolecular eliminations, and was not affected by conformational mobility. 13C-AKIEs for transformation by LinA1 and LinA2 were the same (1.024 ± 0.001 and 1.025 ± 0.001, respectively), whereas 2H-AKIEs showed minor differences (2.4 ± 0.1 and 2.6 ± 0.1). Variations of isotope effects between LinA1 and LinA2 are small and in the range reported for different degrees of C-H bond cleavage in transition states of dehydrochlorination reactions. The large C and H isotope fractionation reported here for experiments with pure enzymes contrasts with previous observations from whole cell experiments and suggests that specific uptake processes by HCH-degrading microorganisms might modulate the observable HCH isotope fractionation at contaminated sites.


Asunto(s)
Hexaclorociclohexano , Liasas , Isótopos , Cinética
6.
Anal Chem ; 90(12): 7292-7301, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29779374

RESUMEN

Compound-specific isotope analysis (CSIA) of polar organic micropollutants in environmental waters requires a processing of large sample volumes to obtain the required analyte masses for analysis by gas chromatography/isotope-ratio mass spectrometry (GC/IRMS). However, the accumulation of organic matter of unknown isotopic composition in standard enrichment procedures currently compromises the accurate determination of isotope ratios. We explored the use of molecularly imprinted polymers (MIPs) for selective analyte enrichment for 13C/12C and 15N/14N ratio measurements by GC/IRMS using 1 H-benzotriazole, a typical corrosion inhibitor in dishwashing detergents, as example of a widely detected polar organic micropollutant. We developed procedures for the treatment of >10 L of water samples, in which custom-made MIPs enabled the selective cleanup of enriched analytes in organic solvents obtained through conventional solid-phase extractions. Hydrogen bonding interactions between the triazole moiety of 1 H-benzotriazole, and the MIP were responsible for selective interactions through an assessment of interaction enthalpies and 15N isotope effects. The procedure was applied successfully without causing isotope fractionation to river water samples, as well as in- and effluents of wastewater treatment plants containing µg/L concentrations of 1 H-benzotriazole and dissolved organic carbon (DOC) loads of up to 28 mg C/L. MIP-based treatments offer new perspectives for CSIA of organic micropollutants through the reduction of the DOC-to-micropollutant ratios.


Asunto(s)
Isótopos/análisis , Impresión Molecular/métodos , Polímeros/química , Contaminantes Químicos del Agua/análisis , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos/análisis , Ríos/química , Extracción en Fase Sólida , Aguas Residuales/química
7.
Rapid Commun Mass Spectrom ; 30(6): 684-90, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-26864520

RESUMEN

RATIONALE: Oxygen isotope fractionation of molecular O2 is an important process for the study of aerobic metabolism, photosynthesis, and formation of reactive oxygen species. The latter is of particular interest for investigating the mechanism of enzyme-catalyzed reactions, such as the oxygenation of organic pollutants, which is an important detoxification mechanism. METHODS: We developed a simple method to measure the δ(18) O values of dissolved O2 in small samples using automated split injection for gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS). After creating a N2 headspace, the dissolved O2 partitions from aqueous solution to the headspace, from which it can be injected into the gas chromatograph. RESULTS: In aqueous samples of 10 mL and in diluted air samples, we quantified the δ(18) O values at O2 concentrations of 16 µM and 86 µM, respectively. The chromatographic separation of O2 and N2 with a molecular sieve column made it possible to use N2 as the headspace gas for the extraction of dissolved O2 from water. We were therefore able to apply a rigorous δ(18) O blank correction for the quantification of (18) O/(16) O ratios in 20 nmol of injected O2 . CONCLUSIONS: The successful quantification of (18) O-kinetic isotope effects associated with enzymatic and chemical reduction of dissolved O2 illustrates how the proposed method can be applied for studying enzymatic O2 activation mechanisms in a variety of (bio)chemical processes.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Isótopos de Oxígeno/análisis , Glucosa Oxidasa/metabolismo , Hierro , Modelos Químicos , Oxidación-Reducción , Reproducibilidad de los Resultados
8.
Anal Chem ; 87(5): 2916-24, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25621380

RESUMEN

Mitigation of N-nitrosodimethylamine (NDMA) and other hazardous water disinfection byproducts (DBP) is currently hampered by a limited understanding of DBP formation mechanisms. Because variations of the stable isotope composition of NDMA can potentially reveal reaction pathways and precursor compounds, we developed a method for the compound-specific isotope analysis (CSIA) of (13)C/(12)C, (15)N/(14)N, and (2)H/(1)H ratios of NDMA by gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS). Method quantification limits for the accurate isotope analysis of NDMA, N-nitrosodiethyl-, -dipropyl-, and -dibutylamine as well as N-nitrosopyrrolidine were between 0.18 to 0.60 nmol C, 0.40 to 0.80 nmol N, and 2.2 to 5.8 nmol H injected on column. Coupling solid phase extraction (SPE) to GC/IRMS enabled the precise quantification of C, N, and H isotope ratios of NDMA in aqueous samples at concentrations of 0.6 µM (45 µg L(-1)). We validated the proposed method with a laboratory experiment, in which NDMA was formed with stoichiometric yield (97 ± 4%) through chloramination of the pharmaceutical ranitidine (3 µM). δ(13)C and δ(2)H values of NDMA remained constant during NDMA formation while its δ(15)N increased due to a reaction at a N atom in the rate-limiting step of NDMA formation. The δ(2)H value of NDMA determined by SPE-GC/IRMS also corresponded well to the δ(2)H value of the N(CH3)2-group of ranitidine measured by quantitative deuterium nuclear magnetic resonance spectroscopy. This observation implies that the N(CH3)2-moiety of ranitidine is transferred to NDMA without being chemically altered and illustrates the accuracy of the proposed method.


Asunto(s)
Isótopos de Carbono/química , Dimetilnitrosamina/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrógeno/química , Isótopos de Nitrógeno/química , Contaminantes Químicos del Agua/análisis , Agua/química , Desinfección , Marcaje Isotópico , Espectroscopía de Resonancia Magnética , Extracción en Fase Sólida
9.
Environ Sci Technol ; 49(21): 12766-73, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26418612

RESUMEN

Organic micropollutants containing aniline substructures are susceptible to different light-induced transformation processes in aquatic environments and water treatment operations. Here, we investigated the magnitude and variability of C and N isotope fractionation during the indirect phototransformation of four para-substituted anilines in aerated aqueous solutions. The model photosensitizers, namely 9,10-anthraquinone-1,5-disulfonate and methylene blue, were used as surrogates for dissolved organic matter chromophores generating excited triplet states in sunlit surface waters. The transformation of aniline, 4-CH3-, 4-OCH3-, and 4-Cl-aniline by excited triplet states of the photosensitizers was associated with inverse and normal N isotope fractionation, whereas C isotope fractionation was negligible. The apparent 15N kinetic isotope effects (AKIE) were almost identical for both photosensitizers, increased from 0.9958±0.0013 for 4-OCH3-aniline to 1.0035±0.0006 for 4-Cl-aniline, and correlated well with the electron donating properties of the substituent. N isotope fractionation is pH-dependent in that H+ exchange reactions dominate below and N atom oxidation processes above the pKa value of the substituted aniline's conjugate acid. Correlations of C and N isotope fractionation for indirect phototransformation were different from those determined previously for the direct photolysis of chloroanilines and offer new opportunities to distinguish between abiotic degradation pathways.


Asunto(s)
Compuestos de Anilina/química , Fotólisis , Agua/química , Antraquinonas/química , Isótopos de Carbono , Fraccionamiento Químico , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Isótopos de Nitrógeno , Oxidación-Reducción , Soluciones
10.
Environ Sci Technol ; 49(16): 9797-806, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26196498

RESUMEN

Isotope fractionation associated with the photochemical transformation of organic contaminants is not well understood and can arise not only from bond cleavage reactions but also from photophysical processes. In this work, we investigated the photolytic dechlorination of 2-Cl- and 3-Cl-aniline to aminophenols to obtain insights into the impact of the substituent position on the apparent (13)C and (15)N kinetic isotope effects (AKIEs). Laboratory experiments were performed in aerated aqueous solutions at an irradiation wavelength of 254 nm over the pH range 2.0 to 7.0 in the absence and presence of Cs(+) used as an excited singlet state quencher. Photolysis of 2-Cl-anilinium cations exhibits normal C and inverse N isotope fractionation, while neutral 2-Cl-aniline species shows inverse C and normal N isotope fractionation. In contrast, the photolysis of 3-Cl-aniline was almost insensitive to C isotope composition and the moderate N isotope fractionation points to rate-limiting photophysical processes. (13)C- and (15)N-AKIE-values of 2-Cl-aniline decreased in the presence of Cs(+), whereas those for 3-Cl-aniline were not systematically affected by Cs(+). Our current and previous work illustrates that photolytic dechlorinations of 2-Cl-, 3-Cl-, and 4-Cl-aniline isomers are each accompanied by distinctly different and highly variable C and N isotope fractionation due to spin selective isotope effects.


Asunto(s)
Compuestos de Anilina/química , Halogenación , Procesos Fotoquímicos , Isótopos de Carbono , Fraccionamiento Químico , Concentración de Iones de Hidrógeno , Cinética , Isótopos de Nitrógeno , Fotólisis
11.
Environ Sci Technol ; 49(7): 4263-73, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25719866

RESUMEN

Compound-specific isotope analysis is a useful approach to track transformations of many organic soil and water pollutants. Applications of CSIA to characterize photochemical processes, however, have hardly been explored. In this work, we systematically studied C and N isotope fractionation associated with the direct photolysis of 4-Cl-aniline used as a model compound for organic micropollutants that are known to degrade via photochemical processes. Laboratory experiments were carried out at an irradiation wavelength of 254 nm over the pH range 2.0 to 9.0 as well as in the presence of Cs(+) as a quencher of excited singlet 4-Cl-aniline at pH 7.0 and 9.0. We observed considerable variation of C and N isotope enrichment factors, ϵC and ϵN, between -1.2 ± 0.2‰ to -2.7 ± 0.2‰ for C and -0.6 ± 0.2‰ to -9.1 ± 1.6‰ for N, respectively, which could not be explained by the speciation of 4-Cl-aniline alone. In the presence of 1 M Cs(+), we found a marked increase of apparent (13)C-kinetic isotope effects ((13)C-AKIE) and decrease of 4-Cl-aniline fluorescence lifetimes. Our data suggest that variations of C and N isotope fractionation originate from heterolytic dechlorination of excited triplet and singlet states of 4-Cl-aniline. Linear correlations of (13)C-AKIE vs (15)N-AKIE were distinctly different for these two reaction pathways and may be explored further for the identification of photolytic aromatic dechlorination reactions.


Asunto(s)
Compuestos de Anilina/química , Isótopos de Carbono/química , Fraccionamiento Químico , Contaminantes Ambientales/química , Fluorescencia , Concentración de Iones de Hidrógeno , Cinética , Isótopos de Nitrógeno/química , Fotólisis
12.
Environ Sci Technol ; 48(18): 10750-9, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25101486

RESUMEN

Oxygenation of aromatic rings is a frequent initial step in the biodegradation of persistent contaminants, and the accompanying isotope fractionation is increasingly used to assess the extent of transformation in the environment. Here, we systematically investigated the dioxygenation of two nitroaromatic compounds (nitrobenzene and 2-nitrotoluene) by nitrobenzene dioxygenase (NBDO) to obtain insights into the factors governing its C, H, and N isotope fractionation. Experiments were carried out at different levels of biological complexity from whole bacterial cells to pure enzyme. C, H, and N isotope enrichment factors and kinetic isotope effects (KIEs) were derived from the compound-specific isotope analysis of nitroarenes, whereas C isotope fractionation was also quantified in the oxygenated reaction products. Dioxygenation of nitrobenzene to catechol and 2-nitrotoluene to 3-methylcatechol showed large C isotope enrichment factors, ϵC, of -4.1 ± 0.2‰ and -2.5 ± 0.2‰, respectively, and was observed consistently in the substrates and dioxygenation products. ϵH- and ϵN-values were smaller, that is -5.7 ± 1.3‰ and -1.0 ± 0.3‰, respectively. C isotope fractionation was also identical in experiments with whole bacterial cells and pure enzymes. The corresponding (13)C-KIEs for the dioxygenation of nitrobenzene and 2-nitrotoluene were 1.025 ± 0.001 and 1.018 ± 0.001 and suggest a moderate substrate specificity. Our study illustrates that dioxygenation of nitroaromatic contaminants exhibits a large C isotope fractionation, which is not masked by substrate transport and uptake processes and larger than dioxygenation of other aromatic hydrocarbons.


Asunto(s)
Dioxigenasas/metabolismo , Nitrobencenos/metabolismo , Oxígeno/metabolismo , Tolueno/análogos & derivados , Biocatálisis , Biodegradación Ambiental , Isótopos de Carbono/análisis , Catecoles/metabolismo , Fraccionamiento Químico , Deuterio/metabolismo , Escherichia coli/metabolismo , Cinética , Nitritos/metabolismo , Isótopos de Nitrógeno , Oxidación-Reducción , Tolueno/metabolismo
13.
Chimia (Aarau) ; 68(11): 788-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26508486

RESUMEN

Assessing the pathways and rates of organic pollutant transformation in the environment is a major challenge due to co-occurring transport and degradation processes. Measuring changes of stable isotope ratios (e.g. (13)C/(12)C, (2)H/(1)H, (15)N/(14)N) in individual organic compounds by compound-specific isotope analysis (CSIA) makes it possible to identify degradation pathways without the explicit need to quantify pollutant concentration dynamics. The so-called isotope fractionation observed in an organic pollutant is related to isotope effects of (bio)chemical reactions and enables one to characterize pollutant degradation even if multiple processes take place simultaneously. Here, we illustrate some principles of CSIA using benzotriazole, a frequently observed aquatic micropollutant, as example. We show subsequently how the combined C and N isotope fractionation analysis of nitroaromatic compounds reveals kinetics and mechanisms of reductive and oxidative reactions as well as their (bio)degradation pathways in the environment.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales/química , Fraccionamiento Químico , Isótopos , Cinética , Modelos Químicos , Compuestos Orgánicos
14.
Environ Sci Technol ; 47(23): 13459-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24175739

RESUMEN

Oxidation of aromatic rings and its alkyl substituents are often competing initial steps of organic pollutant transformation. The use of compound-specific isotope analysis (CSIA) to distinguish between these two pathways quantitatively, however, can be hampered by large H isotope fractionation that precludes calculation of apparent (2)H-kinetic isotope effects (KIE) as well as the process identification in multi-element isotope fractionation analysis. Here, we investigated the C and H isotope fractionation associated with the transformation of toluene, nitrobenzene, and four substituted nitrotoluenes by permanganate, MnO4(-), to propose a refined evaluation procedure for the quantitative distinction of CH3-group oxidation and dioxygenation. On the basis of batch experiments, an isotopomer-specific kinetic model, and density functional theory (DFT) calculations, we successfully derived the large apparent (2)H-KIE of 4.033 ± 0.20 for the CH3-group oxidation of toluene from H isotope fractionation exceeding >1300‰ as well as the corresponding (13)C-KIE (1.0324 ± 0.0011). Experiment and theory also agreed well for the dioxygenation of nitrobenzene, which was associated with (2)H- and (13)C-KIEs of 0.9410 ± 0.0030 (0.9228 obtained by DFT) and 1.0289 ± 0.0003 (1.025). Consistent branching ratios for the competing CH3-group oxidation and dioxygenation of nitrotoluenes by MnO4(-) were obtained from the combined modeling of concentration as well as C and H isotope signature trends. Our approach offers improved estimates for the identification of contaminant microbial and abiotic oxidation pathways by CSIA.


Asunto(s)
Contaminantes Ambientales/química , Hidrocarburos Aromáticos/química , Isótopos de Carbono/análisis , Fraccionamiento Químico/métodos , Deuterio/análisis , Restauración y Remediación Ambiental , Cinética , Compuestos de Manganeso , Modelos Químicos , Estructura Molecular , Nitrobencenos/análisis , Oxidación-Reducción , Óxidos , Tolueno/análisis
15.
Environ Sci Technol ; 47(13): 6872-83, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23547531

RESUMEN

Assessing the fate of nitroaromatic explosives in the subsurface is challenging because contaminants are present in different phases (e.g., bound to soil or sediment matrix or as solid-phase residues) and transformation takes place via several potentially competing pathways over time-scales of decades. We developed a procedure for compound-specific analysis of stable C, N, and H isotopes in nitroaromatic compounds (NACs) and characterized biodegradation of 2,4,6-trinitrotoluene (TNT) and two dinitrotoluene isomers (2,4-DNT and 2,6-DNT) in subsurface material of a contaminated site. The type and relative contribution of reductive and oxidative pathways to the degradation of the three contaminants was inferred from the combined evaluation of C, N, and H isotope fractionation. Indicative trends of Δδ(15)N vs Δδ(13)C and Δδ(2)H vs Δδ(13)C were obtained from laboratory model systems for biodegradation pathways initiated via (i) dioxygenation, (ii) reduction, and (iii) CH3-group oxidation. The combined evaluation of NAC isotope fractionation in subsurface materials and in laboratory experiments suggests that in the field, 86-89% of 2,4-DNT transformation was due to dioxygenation while TNT was mostly reduced and 2,6-DNT reacted via a combination of reduction and CH3-group oxidation. Based on historic information on site operation, our data imply biodegradation of 2,4-DNT with half-lives of up to 9-17 years compared to 18-34 years for cometabolic transformation of TNT and 2,6-DNT.


Asunto(s)
Derivados del Benceno/química , Derivados del Benceno/metabolismo , Sustancias Explosivas/química , Sustancias Explosivas/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Burkholderia cepacia/metabolismo , Isótopos de Carbono/análisis , Deuterio/análisis , Mycobacterium/metabolismo , Isótopos de Nitrógeno/análisis , Pseudomonas/metabolismo
16.
Environ Sci Technol ; 47(24): 14185-93, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24266668

RESUMEN

Monooxygenation is an important route of nitroaromatic compound (NAC) biodegradation and it is widely found for cometabolic transformations of NACs and other aromatic pollutants. We investigated the C and N isotope fractionation of nitrophenol monooxygenation to complement the characterization of NAC (bio)degradation pathways by compound-specific isotope analysis (CSIA). Because of the large diversity of enzymes catalyzing monooxygenations, we studied the combined C and N isotope fractionation and the corresponding (13)C- and (15)N-apparent kinetic isotope effects (AKIEs) of four nitrophenol-biodegrading microorganisms (Bacillus spharericus JS905, Pseudomonas sp. 1A, Arthrobacter sp. JS443, Pseudomonas putida B2) in the pH range 6.1-8.6 with resting cells and crude cell extracts. While the extent of C and N isotope fractionation and the AKIE-values varied considerably for the different organisms, the correlated C and N isotope signatures (δ(15)N vs δ(13)C) revealed trends, indicative of two distinct monooxygenation pathways involving hydroxy-1,4-benzoquinone or 1,2- and 1,4-benzoquinone intermediates, respectively. The distinction was possible based on larger secondary (15)N-AKIEs associated with the benzoquinone pathway. Isotope fractionation was neither masked substantially by nitrophenol speciation nor transport across cell membranes. Only when 4-nitrophenol was biodegraded by Pseudomonas sp. 1A did isotope fractionation become negligible, presumably due to rate-limiting substrate binding steps pertinent to the catalytic cycle of flavin-dependent monooxygenases.


Asunto(s)
Redes y Vías Metabólicas , Oxigenasas de Función Mixta/metabolismo , Nitrofenoles/metabolismo , Arthrobacter/metabolismo , Bacillus/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Biocatálisis , Biodegradación Ambiental , Isótopos de Carbono , Fraccionamiento Químico , Contaminantes Ambientales/análisis , Cinética , Isótopos de Nitrógeno , Nitrofenoles/química , Pseudomonas putida/metabolismo
17.
Anal Bioanal Chem ; 405(9): 2843-56, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23224662

RESUMEN

Compound-specific isotope analysis (CSIA) is an important tool for the identification of contaminant sources and transformation pathways, but it is rarely applied to emerging aquatic micropollutants owing to a series of instrumental challenges. Using four different benzotriazole corrosion inhibitors and its derivatives as examples, we obtained evidence that formation of organometallic complexes of benzotriazoles with parts of the instrumentation impedes isotope analysis. Therefore, we propose two strategies for accurate [Formula: see text]C and [Formula: see text]N measurements of polar organic micropollutants by gas chromatography isotope ratio mass spectrometry (GC/IRMS). Our first approach avoids metallic components and uses a Ni/Pt reactor for benzotriazole combustion while the second is based on the coupling of online methylation to the established GC/IRMS setup. Method detection limits for on-column injection of benzotriazole, as well as its 1-CH[Formula: see text]-, 4-CH[Formula: see text]-, and 5-CH[Formula: see text]-substituted species were 0.1-0.3 mM and 0.1-1.0 mM for δ(13)C and δ(15)N analysis respectively, corresponding to injected masses of 0.7-1.8 nmol C and 0.4-3.0 nmol N, respectively. The Ni/Pt reactor showed good precision and was very long-lived ([Formula: see text]1000 successful measurements). Coupling isotopic analysis to offline solid-phase extraction enabled benzotriazole-CSIA in tap water, wastewater treatment effluent, activated sludge, and in commercial dishwashing products. A comparison of [Formula: see text]C and [Formula: see text]N values from different benzotriazoles and benzotriazole derivatives, both from commercial standards and in dishwashing detergents, reveals the potential application of the proposed method for source apportionment.

18.
Environ Sci Technol ; 46(13): 7189-98, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22681573

RESUMEN

We investigated the mechanisms and isotope effects associated with the N-dealkylation and N-atom oxidation of substituted N-methyl- and N,N-dimethylanilines to identify isotope fractionation trends for the assessment of oxidations of aromatic N-alkyl moieties by compound-specific isotope analysis (CSIA). In laboratory batch model systems, we determined the C, H, and N isotope enrichment factors for the oxidation by MnO(2) and horseradish peroxidase (HRP), derived apparent (13)C-, (2)H-, and (15)N-kinetic isotope effects (AKIEs), and characterized reaction products. The N-atom oxidation pathway leading to radical coupling products typically exhibited inverse (15)N-AKIEs (up to 0.991) and only minor (13)C- and (2)H-AKIEs. Oxidative N-dealkylation, in contrast, was subject to large normal (13)C- and (2)H-AKIEs (up to 1.019 and 3.1, respectively) and small (15)N-AKIEs. Subtle changes of the compound's electronic properties due to different types of aromatic and/or N-alkyl substituents resulted in changes of reaction mechanisms, rate-limiting step(s), and thus isotope fractionation trends. The complex sequence of electron and proton transfers during the oxidative transformation of substituted aromatic N-alkyl amines suggests highly compound- and mechanism-dependent isotope effects precluding extrapolations to other organic micropollutants reacting along the same degradation pathways.


Asunto(s)
Compuestos de Anilina/química , Carbono/análisis , Hidrocarburos Aromáticos/química , Hidrógeno/análisis , Nitrógeno/análisis , Compuestos de Anilina/metabolismo , Armoracia/enzimología , Peroxidasa de Rábano Silvestre/metabolismo , Hidrocarburos Aromáticos/metabolismo , Isótopos/análisis , Compuestos de Manganeso/química , Oxidación-Reducción , Óxidos/química
19.
Environ Sci Technol ; 46(4): 2064-70, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22268675

RESUMEN

Polyhalogenated 1'-methyl-1,2'-bipyrroles are natural products that biomagnify into upper trophic levels of marine food webs. Here we demonstrate that they are unusually enriched in (15)N (δ(15)N from +19.3‰ to +28.1‰) relative to other biosynthetic organic compounds measured to date and the mammals from which the compounds were isolated. We argue the (15)N enrichment likely stems from enriched precursors and/or fractionation during biosynthesis and is not from MBP degradation. We also consider possible sources of MBPs in light of these results.


Asunto(s)
Tejido Adiposo/química , Delfines , Hidrocarburos Halogenados/análisis , Isótopos de Nitrógeno/análisis , Pirroles/análisis , Animales , Productos Biológicos/análisis , Monitoreo del Ambiente , Femenino , Masculino , Massachusetts
20.
Environ Sci Technol ; 46(21): 11844-53, 2012 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-23017098

RESUMEN

Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.


Asunto(s)
Compuestos de Anilina/metabolismo , Burkholderia/metabolismo , Difenilamina/metabolismo , Compuestos de Anilina/química , Biodegradación Ambiental , Isótopos de Carbono , Dioxigenasas/metabolismo , Difenilamina/química , Compuestos de Manganeso/química , Isótopos de Nitrógeno , Oxidación-Reducción , Óxidos/química , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA