Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647415

RESUMEN

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Asunto(s)
Coenzima A Ligasas/metabolismo , Metabolismo de los Lípidos/fisiología , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Células Cultivadas , Citrato (si)-Sintasa/metabolismo , Coenzima A Ligasas/genética , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Obesidad/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , ARN Mensajero/metabolismo , Ratas Wistar
2.
J Cell Physiol ; 232(5): 958-966, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27736004

RESUMEN

Mitochondria play a critical role in several cellular processes and cellular homeostasis. Mitochondrion dysfunction has been correlated with numerous metabolic diseases such as obesity and type 2 diabetes. MicroRNAs are non-coding RNAs that have emerged as key regulators of cell metabolism. The microRNAs act as central regulators of metabolic gene networks by leading to the degradation of their target messenger RNA or repression of protein translation. In addition, vesicular and non-vesicular circulating miRNAs exhibit a potential role as mediators of the cross-talk between the skeletal muscle and other tissues/organs. In this review, we will focus on the emerging knowledge of miRNAs controlling mitochondrial function and insulin signaling in skeletal muscle cells. J. Cell. Physiol. 232: 958-966, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Insulina/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Transducción de Señal , Humanos
3.
J Pineal Res ; 57(2): 155-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24981026

RESUMEN

Melatonin has a number of beneficial metabolic actions and reduced levels of melatonin may contribute to type 2 diabetes. The present study investigated the metabolic pathways involved in the effects of melatonin on mitochondrial function and insulin resistance in rat skeletal muscle. The effect of melatonin was tested both in vitro in isolated rats skeletal muscle cells and in vivo using pinealectomized rats (PNX). Insulin resistance was induced in vitro by treating primary rat skeletal muscle cells with palmitic acid for 24 hr. Insulin-stimulated glucose uptake was reduced by palmitic acid followed by decreased phosphorylation of AKT which was prevented my melatonin. Palmitic acid reduced mitochondrial respiration, genes involved in mitochondrial biogenesis and the levels of tricarboxylic acid cycle intermediates whereas melatonin counteracted all these parameters in insulin-resistant cells. Melatonin treatment increases CAMKII and p-CREB but had no effect on p-AMPK. Silencing of CREB protein by siRNA reduced mitochondrial respiration mimicking the effect of palmitic acid and prevented melatonin-induced increase in p-AKT in palmitic acid-treated cells. PNX rats exhibited mild glucose intolerance, decreased energy expenditure and decreased p-AKT, mitochondrial respiration, and p-CREB and PGC-1 alpha levels in skeletal muscle which were restored by melatonin treatment in PNX rats. In summary, we showed that melatonin could prevent mitochondrial dysfunction and insulin resistance via activation of CREB-PGC-1 alpha pathway. Thus, the present work shows that melatonin play an important role in skeletal muscle mitochondrial function which could explain some of the beneficial effects of melatonin in insulin resistance states.


Asunto(s)
Resistencia a la Insulina/fisiología , Melatonina/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Células Cultivadas , Ciclo del Ácido Cítrico/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Masculino , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
4.
J Nutr Biochem ; 55: 76-88, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29413492

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to improve insulin sensitivity and glucose homeostasis in animal models of insulin resistance, but the involved mechanisms still remain unresolved. In this study, we evaluated the effects of fish oil (FO), a source of n-3 PUFAs, on obesity, insulin resistance and muscle mitochondrial function in mice fed a high-fat diet (HFD). C57Bl/6 male mice, 8 weeks old, were divided into four groups: control diet (C), high-fat diet (H), C+FO (CFO) and H+FO (HFO). FO was administered by oral gavage (2 g/kg b.w.), three times a week, starting 4 weeks before diet administration until the end of the experimental protocol. HFD-induced obesity and insulin resistance associated with impaired skeletal muscle mitochondrial function, as indicated by decreased oxygen consumption, tricarboxylic acid cycle intermediate (TCAi) contents (citrate, α-ketoglutarate, malate and oxaloacetate), oxidative phosphorylation protein content and mitochondrial biogenesis. These effects were associated with elevated reactive oxygen species production, decreased PGC1-a transcription and reduced Akt phosphorylation. The changes induced by the HFD were partially attenuated by FO, which decreased obesity and insulin resistance and increased mitochondrial function. In the H group, FO supplementation also improved oxygen consumption; increased TCAi content, and Akt and AMPK phosphorylation; and up-regulated mRNA expression of Gpat1, Pepck, catalase and mitochondrial proteins (Pgc1α, Pparα, Cpt1 and Ucp3). These results suggest that dietary FO attenuates the deleterious effects of the HFD (obesity and insulin resistance) by improving skeletal muscle mitochondrial function.


Asunto(s)
Aceites de Pescado/farmacología , Resistencia a la Insulina , Mitocondrias Musculares/fisiología , Obesidad/dietoterapia , Adiposidad/efectos de los fármacos , Animales , Fármacos Antiobesidad/farmacología , Catalasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-3/farmacología , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Obesidad/etiología , Proteínas/genética , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA