Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37511281

RESUMEN

Total bilateral Limbal Stem Cell Deficiency is a pathologic condition of the ocular surface due to the loss of corneal stem cells. Cultivated oral mucosa epithelial transplantation (COMET) is the only autologous successful treatment for this pathology in clinical application, although abnormal peripheric corneal vascularization often occurs. Properly characterizing the regenerated ocular surface is needed for a reliable follow-up. So far, the univocal identification of transplanted oral mucosa has been challenging. Previously proposed markers were shown to be co-expressed by different ocular surface epithelia in a homeostatic or perturbated environment. In this study, we compared the transcriptome profile of human oral mucosa, limbal and conjunctival cultured holoclones, identifying Paired Like Homeodomain 2 (PITX2) as a new marker that univocally distinguishes the transplanted oral tissue from the other epithelia. We validated PITX2 at RNA and protein levels to investigate 10-year follow-up corneal samples derived from a COMET-treated aniridic patient. Moreover, we found novel angiogenesis-related factors that were differentially expressed in the three epithelia and instrumental in explaining the neovascularization in COMET-treated patients. These results will support the follow-up analysis of patients transplanted with oral mucosa and provide new tools to understand the regeneration mechanism of transplanted corneas.


Asunto(s)
Células Epiteliales , Mucosa Bucal , Humanos , Estudios de Seguimiento , Células Epiteliales/metabolismo , Células Cultivadas , Epitelio , Trasplante de Células Madre/métodos , Trasplante Autólogo
2.
Biomedicines ; 12(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39062158

RESUMEN

Fibroblasts are typical mesenchymal cells widely distributed throughout the human body where they (1) synthesise and maintain the extracellular matrix, ensuring the structural role of soft connective tissues; (2) secrete cytokines and growth factors; (3) communicate with each other and with other cell types, acting as signalling source for stem cell niches; and (4) are involved in tissue remodelling, wound healing, fibrosis, and cancer. This review focuses on the developmental heterogeneity of dermal fibroblasts, on their ability to sense changes in biomechanical properties of the surrounding extracellular matrix, and on their role in aging, in skin repair, in pathologic conditions and in tumour development. Moreover, we describe the use of fibroblasts in different models (e.g., in vivo animal models and in vitro systems from 2D to 6D cultures) for tissue bioengineering and the informative potential of high-throughput assays for the study of fibroblasts under different disease contexts for personalized healthcare and regenerative medicine applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA