Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Med ; 22(1): 32, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281920

RESUMEN

BACKGROUND: Higher maternal pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and perinatal outcomes. However, whether these associations are causal remains unclear. METHODS: We explored the relation of maternal pre-/early-pregnancy BMI with 20 pregnancy and perinatal outcomes by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, and paternal negative control analyses), including data from over 400,000 women. RESULTS: All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal anaemia, delivering a small-for-gestational-age baby and initiating breastfeeding, but higher odds of hypertensive disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre-labour membrane rupture, induction of labour, caesarean section, large-for-gestational age, high birthweight, low Apgar score at 1 min, and neonatal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates from Mendelian randomisation. CONCLUSIONS: Our findings support a causal role for maternal pre-/early-pregnancy BMI on 14 out of 20 adverse pregnancy and perinatal outcomes. Pre-conception interventions to support women maintaining a healthy BMI may reduce the burden of obstetric and neonatal complications. FUNDING: Medical Research Council, British Heart Foundation, European Research Council, National Institutes of Health, National Institute for Health Research, Research Council of Norway, Wellcome Trust.


Asunto(s)
Diabetes Gestacional , Hipertensión Inducida en el Embarazo , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Índice de Masa Corporal , Cesárea , Hipertensión Inducida en el Embarazo/epidemiología , Preeclampsia/epidemiología , Análisis de la Aleatorización Mendeliana
2.
BMC Med ; 20(1): 419, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320039

RESUMEN

BACKGROUND: Observational epidemiological studies suggest a link between several factors related to ovulation and reproductive function and endometrial cancer (EC) risk; however, it is not clear whether these relationships are causal, and whether the risk factors act independently of each other. The aim of this study was to investigate putative causal relationships between the number of live births, age at last live birth, and years ovulating and EC risk.  METHODS: We conducted a series of observational analyses to investigate various risk factors and EC risk in the UK Biobank (UKBB). Additionally, multivariate analysis was performed to elucidate the relationship between the number of live births, age at last live birth, and years ovulating and other related factors such as age at natural menopause, age at menarche, and body mass index (BMI). Secondly, we used Mendelian randomization (MR) to assess if these observed relationships were causal. Genome-wide significant single nucleotide polymorphisms (SNPs) were extracted from previous studies of woman's number of live births, age at menopause and menarche, and BMI. We conducted a genome-wide association analysis using the UKBB to identify SNPs associated with years ovulating, years using the contraceptive pill, and age at last live birth. RESULTS: We found evidence for a causal effect of the number of live births (inverse variance weighted (IVW) odds ratio (OR): 0.537, p = 0.006), the number of years ovulating (IVW OR: 1.051, p = 0.014), in addition to the known risk factors BMI, age at menarche, and age at menopause on EC risk in the univariate MR analyses. Due to the close relationships between these factors, we followed up with multivariable MR (MVMR) analysis. Results from the MVMR analysis showed that number of live births had a causal effect on EC risk (OR: 0.783, p = 0.036) independent of BMI, age at menarche and age at menopause. CONCLUSIONS: MVMR analysis showed that the number of live births causally reduced the risk of EC.


Asunto(s)
Neoplasias Endometriales , Análisis de la Aleatorización Mendeliana , Femenino , Humanos , Estudio de Asociación del Genoma Completo , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Ovulación
3.
BMC Med ; 20(1): 34, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101027

RESUMEN

BACKGROUND: Greater maternal adiposity before or during pregnancy is associated with greater offspring adiposity throughout childhood, but the extent to which this is due to causal intrauterine or periconceptional mechanisms remains unclear. Here, we use Mendelian randomisation (MR) with polygenic risk scores (PRS) to investigate whether associations between maternal pre-/early pregnancy body mass index (BMI) and offspring adiposity from birth to adolescence are causal. METHODS: We undertook confounder adjusted multivariable (MV) regression and MR using mother-offspring pairs from two UK cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) and Born in Bradford (BiB). In ALSPAC and BiB, the outcomes were birthweight (BW; N = 9339) and BMI at age 1 and 4 years (N = 8659 to 7575). In ALSPAC only we investigated BMI at 10 and 15 years (N = 4476 to 4112) and dual-energy X-ray absorptiometry (DXA) determined fat mass index (FMI) from age 10-18 years (N = 2659 to 3855). We compared MR results from several PRS, calculated from maternal non-transmitted alleles at between 29 and 80,939 single nucleotide polymorphisms (SNPs). RESULTS: MV and MR consistently showed a positive association between maternal BMI and BW, supporting a moderate causal effect. For adiposity at most older ages, although MV estimates indicated a strong positive association, MR estimates did not support a causal effect. For the PRS with few SNPs, MR estimates were statistically consistent with the null, but had wide confidence intervals so were often also statistically consistent with the MV estimates. In contrast, the largest PRS yielded MR estimates with narrower confidence intervals, providing strong evidence that the true causal effect on adolescent adiposity is smaller than the MV estimates (Pdifference = 0.001 for 15-year BMI). This suggests that the MV estimates are affected by residual confounding, therefore do not provide an accurate indication of the causal effect size. CONCLUSIONS: Our results suggest that higher maternal pre-/early-pregnancy BMI is not a key driver of higher adiposity in the next generation. Thus, they support interventions that target the whole population for reducing overweight and obesity, rather than a specific focus on women of reproductive age.


Asunto(s)
Adiposidad/genética , Obesidad/genética , Adolescente , Alelos , Índice de Masa Corporal , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Estudios Longitudinales , Obesidad/etiología , Embarazo , Factores de Riesgo , Reino Unido
4.
BMC Public Health ; 20(1): 708, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32423423

RESUMEN

BACKGROUND: The study aimed to explore the association between early life and life-course exposure to social disadvantage and later life body mass index (BMI) accounting for genetic predisposition and maternal BMI. METHODS: We studied participants of Helsinki Birth Cohort Study born in 1934-1944 (HBCS1934-1944, n = 1277) and Northern Finland Birth Cohorts born in 1966 and 1986 (NFBC1966, n = 5807, NFBC1986, n = 6717). Factor analysis produced scores of social disadvantage based on social and economic elements in early life and adulthood/over the life course, and was categorized as high, intermediate and low. BMI was measured at 62 years in HBCS1934-1944, at 46 years in NFBC1966 and at 16 years in NFBC1986. Multivariable linear regression analysis was used to explore associations between social disadvantages and BMI after adjustments for polygenic risk score for BMI (PRS BMI), maternal BMI and sex. RESULTS: The association between exposure to high early social disadvantage and increased later life BMI persisted after adjustments (ß = 0.79, 95% CI, 0.33, 1.25, p < 0.001) in NFBC1966. In NFBC1986 this association was attenuated by PRS BMI (p = 0.181), and in HBCS1934-1944 there was no association between high early social disadvantage and increased later life BMI (ß 0.22, 95% CI -0.91,1.35, p = 0.700). In HBCS1934-1944 and NFBC1966, participants who had reduced their exposure to social disadvantage during the life-course had lower later life BMI than those who had increased their exposure (ß - 1.34, [- 2.37,-0.31], p = 0.011; ß - 0.46, [- 0.89,-0.03], p = 0.038, respectively). CONCLUSIONS: High social disadvantage in early life appears to be associated with higher BMI in later life. Reducing exposure to social disadvantage during the life-course may be a potential pathway for obesity reduction.


Asunto(s)
Índice de Masa Corporal , Predisposición Genética a la Enfermedad/epidemiología , Obesidad/epidemiología , Clase Social , Anciano , Anciano de 80 o más Años , Estatura , Estudios de Cohortes , Femenino , Finlandia , Humanos , Modelos Lineales , Masculino , Factores de Riesgo , Factores Socioeconómicos
5.
JAMA ; 323(7): 636-645, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32068818

RESUMEN

Importance: The incremental value of polygenic risk scores in addition to well-established risk prediction models for coronary artery disease (CAD) is uncertain. Objective: To examine whether a polygenic risk score for CAD improves risk prediction beyond pooled cohort equations. Design, Setting, and Participants: Observational study of UK Biobank participants enrolled from 2006 to 2010. A case-control sample of 15 947 prevalent CAD cases and equal number of age and sex frequency-matched controls was used to optimize the predictive performance of a polygenic risk score for CAD based on summary statistics from published genome-wide association studies. A separate cohort of 352 660 individuals (with follow-up to 2017) was used to evaluate the predictive accuracy of the polygenic risk score, pooled cohort equations, and both combined for incident CAD. Exposures: Polygenic risk score for CAD, pooled cohort equations, and both combined. Main Outcomes and Measures: CAD (myocardial infarction and its related sequelae). Discrimination, calibration, and reclassification using a risk threshold of 7.5% were assessed. Results: In the cohort of 352 660 participants (mean age, 55.9 years; 205 297 women [58.2%]) used to evaluate the predictive accuracy of the examined models, there were 6272 incident CAD events over a median of 8 years of follow-up. CAD discrimination for polygenic risk score, pooled cohort equations, and both combined resulted in C statistics of 0.61 (95% CI, 0.60 to 0.62), 0.76 (95% CI, 0.75 to 0.77), and 0.78 (95% CI, 0.77 to 0.79), respectively. The change in C statistic between the latter 2 models was 0.02 (95% CI, 0.01 to 0.03). Calibration of the models showed overestimation of risk by pooled cohort equations, which was corrected after recalibration. Using a risk threshold of 7.5%, addition of the polygenic risk score to pooled cohort equations resulted in a net reclassification improvement of 4.4% (95% CI, 3.5% to 5.3%) for cases and -0.4% (95% CI, -0.5% to -0.4%) for noncases (overall net reclassification improvement, 4.0% [95% CI, 3.1% to 4.9%]). Conclusions and Relevance: The addition of a polygenic risk score for CAD to pooled cohort equations was associated with a statistically significant, yet modest, improvement in the predictive accuracy for incident CAD and improved risk stratification for only a small proportion of individuals. The use of genetic information over the pooled cohort equations model warrants further investigation before clinical implementation.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Medición de Riesgo/métodos , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Curva ROC , Riesgo
6.
J Dev Orig Health Dis ; 14(2): 242-248, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193707

RESUMEN

One of the longstanding debates in life-course epidemiology is whether an adverse intrauterine environment, often proxied by birth weight, causally increases the future risk of cardiometabolic disease. The use of a discordant twin study design, which controls for the influence of shared genetic and environmental confounding factors, may be useful to investigate whether this relationship is causal. We conducted a discordant twin study of 120 monozygotic (MZ) and 148 dizygotic (DZ) twin pairs from the UK Biobank to explore the potential causal relationships between birth weight and a broad spectrum of later-life cardiometabolic risk factors. We used a linear mixed model to investigate the association between birth weight and later-life cardiometabolic risk factors for twins, allowing for both within-pair differences and between-pair differences in birth weight. Of primary interest is the within-pair association between differences in birth weight and cardiometabolic risk factors, which could reflect an intrauterine effect on later-life risk factors. We found no strong evidence of association in MZ twins between the within-pair differences in birth weight and most cardiometabolic risk factors in later life, except for nominal associations with C-reactive protein and insulin-like growth factor 1. However, these associations were not replicated in DZ twin pairs. Our study provided no strong evidence for intrauterine effects on later-life cardiometabolic risk factors, which is consistent with previous large-scale studies of singletons testing the potential causal relationship. It does not support the hypothesis that adverse intrauterine environments increase the risk of cardiometabolic disease in later life.


Asunto(s)
Bancos de Muestras Biológicas , Enfermedades Cardiovasculares , Humanos , Peso al Nacer , Gemelos Monocigóticos/genética , Reino Unido/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología
7.
medRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37904919

RESUMEN

Fetal growth is an indicator of fetal survival, regulated by maternal and fetal factors, but little is known about the underlying molecular mechanisms. We used Mendelian randomization to explore the effects of maternal and fetal genetically-instrumented plasma proteins on birth weight using genome-wide association summary data (n=406,063 with maternal and/or fetal genotype), with independent replication (n=74,932 mothers and n=62,108 offspring), and colocalisation. Higher genetically-predicted maternal levels of PCSK1 increased birthweight (mean-difference: 9g (95% CI: 5g, 13g) per 1 standard deviation protein level). Higher maternal levels of LGALS4 decreased birthweight (-54g (-29g, -80g)), as did VCAM1, RAD51D and GP1BA. In the offspring, higher genetically-predicted fetal levels of LGALS4 (46g (23g, 70g)) increased birthweight, alongside FCGR2B. Higher offspring levels of PCSK1 decreased birth weight (-9g (-16g, 4g), alongside LEPR. Results support maternal and fetal protein effects on birth weight, implicating roles for glucose metabolism, energy homeostasis, endothelial function and adipocyte differentiation.

8.
Hypertension ; 79(1): 170-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34784738

RESUMEN

Observational epidemiological studies have reported that higher maternal blood pressure (BP) during pregnancy is associated with increased future risk of offspring cardiometabolic disease. However, it is unclear whether this association represents a causal relationship through intrauterine mechanisms. We used a Mendelian randomization (MR) framework to examine the relationship between unweighted maternal genetic scores for systolic BP and diastolic BP and a range of cardiometabolic risk factors in the offspring of up to 29 708 genotyped mother-offspring pairs from the UKB study (UK Biobank) and the HUNT study (Trøndelag Health). We conducted similar analyses in up to 21 423 father-offspring pairs from the same cohorts. We confirmed that the BP-associated genetic variants from the general population sample also had similar effects on maternal BP during pregnancy in independent cohorts. We did not detect any association between maternal (or paternal) unweighted genetic scores and cardiometabolic offspring outcomes in the meta-analysis of UKB and HUNT after adjusting for offspring genotypes at the same loci. We find little evidence to support the notion that maternal BP is a major causal risk factor for adverse offspring cardiometabolic outcomes in later life.


Asunto(s)
Presión Sanguínea/fisiología , Genotipo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Peso al Nacer/genética , Factores de Riesgo Cardiometabólico , Femenino , Humanos , Masculino , Análisis de la Aleatorización Mendeliana , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Factores de Riesgo , Reino Unido
9.
Transl Psychiatry ; 11(1): 455, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34482360

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) often co-occurs with obesity, however, the potential causality between the traits remains unclear. We examined both genetic and prenatal evidence for causality using Mendelian Randomisation (MR) and polygenic risk scores (PRS). We conducted bi-directional MR on ADHD liability and six obesity-related traits using summary statistics from the largest available meta-analyses of genome-wide association studies. We also examined the shared genetic aetiology between ADHD symptoms (inattention and hyperactivity) and body mass index (BMI) by PRS association analysis using longitudinal data from Northern Finland Birth Cohort 1986 (NFBC1986, n = 2984). Lastly, we examined the impact of the prenatal environment by association analysis of maternal pre-pregnancy BMI and offspring ADHD symptoms, adjusted for PRS of both traits, in NFBC1986 dataset. Through MR analyses, we found evidence for bidirectional causality between ADHD liability and obesity-related traits. PRS association analyses showed evidence for genetic overlap between ADHD symptoms and BMI. We found no evidence for a difference between inattention and hyperactivity symptoms, suggesting that neither symptom subtype is driving the association. We found evidence for association between maternal pre-pregnancy BMI and offspring ADHD symptoms after adjusting for both BMI and ADHD PRS (association p-value = 0.027 for inattention, p = 0.008 for hyperactivity). These results are consistent with the hypothesis that the co-occurrence between ADHD and obesity has both genetic and prenatal environmental origins.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Índice de Masa Corporal , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Obesidad/genética , Embarazo
10.
Int J Epidemiol ; 49(1): 233-243, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074781

RESUMEN

BACKGROUND: Maternal pre-pregnancy body mass index (BMI) is positively associated with offspring birth weight (BW) and BMI in childhood and adulthood. Each of these associations could be due to causal intrauterine effects, or confounding (genetic or environmental), or some combination of these. Here we estimate the extent to which the association between maternal BMI and offspring body size is explained by offspring genotype, as a first step towards establishing the importance of genetic confounding. METHODS: We examined the associations of maternal pre-pregnancy BMI with offspring BW and BMI at 1, 5, 10 and 15 years, in three European birth cohorts (n ≤11 498). Bivariate Genomic-relatedness-based Restricted Maximum Likelihood implemented in the GCTA software (GCTA-GREML) was used to estimate the extent to which phenotypic covariance was explained by offspring genotype as captured by common imputed single nucleotide polymorphisms (SNPs). We merged individual participant data from all cohorts, enabling calculation of pooled estimates. RESULTS: Phenotypic covariance (equivalent here to Pearson's correlation coefficient) between maternal BMI and offspring phenotype was 0.15 [95% confidence interval (CI): 0.13, 0.17] for offspring BW, increasing to 0.29 (95% CI: 0.26, 0.31) for offspring 15 year BMI. Covariance explained by offspring genotype was negligible for BW [-0.04 (95% CI: -0.09, 0.01)], but increased to 0.12 (95% CI: 0.04, 0.21) at 15 years, which is equivalent to 43% (95% CI: 15%, 72%) of the phenotypic covariance. Sensitivity analyses using weight, BMI and ponderal index as the offspring phenotype at all ages showed similar results. CONCLUSIONS: Offspring genotype explains a substantial fraction of the covariance between maternal BMI and offspring adolescent BMI. This is consistent with a potentially important role for genetic confounding as a driver of the maternal BMI-offspring BMI association.


Asunto(s)
Peso al Nacer/genética , Índice de Masa Corporal , Madres , Obesidad/etiología , Obesidad Infantil/genética , Adulto , Niño , Femenino , Humanos , Masculino , Obesidad/genética , Embarazo
11.
Sci Adv ; 5(9): eaaw3095, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31840077

RESUMEN

Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies.


Asunto(s)
Índice de Masa Corporal , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Niño , Femenino , Predisposición Genética a la Enfermedad , Genómica , Gráficos de Crecimiento , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Estudios Longitudinales , Masculino , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Receptores de Leptina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA