Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(3): 1-9, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36823026

RESUMEN

The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.


Asunto(s)
Enfermedades Transmisibles Emergentes , Zoonosis , Animales , Humanos , Zoonosis/epidemiología , Pandemias , Animales Salvajes , Animales Domésticos , Enfermedades Transmisibles Emergentes/epidemiología , Brotes de Enfermedades
2.
PLoS Comput Biol ; 17(2): e1008639, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33566839

RESUMEN

Epidemics may pose a significant dilemma for governments and individuals. The personal or public health consequences of inaction may be catastrophic; but the economic consequences of drastic response may likewise be catastrophic. In the face of these trade-offs, governments and individuals must therefore strike a balance between the economic and personal health costs of reducing social contacts and the public health costs of neglecting to do so. As risk of infection increases, potentially infectious contact between people is deliberately reduced either individually or by decree. This must be balanced against the social and economic costs of having fewer people in contact, and therefore active in the labor force or enrolled in school. Although the importance of adaptive social contact on epidemic outcomes has become increasingly recognized, the most important properties of coupled human-natural epidemic systems are still not well understood. We develop a theoretical model for adaptive, optimal control of the effective social contact rate using traditional epidemic modeling tools and a utility function with delayed information. This utility function trades off the population-wide contact rate with the expected cost and risk of increasing infections. Our analytical and computational analysis of this simple discrete-time deterministic strategic model reveals the existence of an endemic equilibrium, oscillatory dynamics around this equilibrium under some parametric conditions, and complex dynamic regimes that shift under small parameter perturbations. These results support the supposition that infectious disease dynamics under adaptive behavior change may have an indifference point, may produce oscillatory dynamics without other forcing, and constitute complex adaptive systems with associated dynamics. Implications for any epidemic in which adaptive behavior influences infectious disease dynamics include an expectation of fluctuations, for a considerable time, around a quasi-equilibrium that balances public health and economic priorities, that shows multiple peaks and surges in some scenarios, and that implies a high degree of uncertainty in mathematical projections.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , Salud Pública , Conducta Social , Simulación por Computador , Trazado de Contacto , Susceptibilidad a Enfermedades , Epidemias , Humanos , Modelos Biológicos , Oscilometría , Riesgo
3.
Proc Biol Sci ; 288(1946): 20202501, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653145

RESUMEN

Precision health mapping is a technique that uses spatial relationships between socio-ecological variables and disease to map the spatial distribution of disease, particularly for diseases with strong environmental signatures, such as diarrhoeal disease (DD). While some studies use GPS-tagged location data, other precision health mapping efforts rely heavily on data collected at coarse-spatial scales and may not produce operationally relevant predictions at fine enough spatio-temporal scales to inform local health programmes. We use two fine-scale health datasets collected in a rural district of Madagascar to identify socio-ecological covariates associated with childhood DD. We constructed generalized linear mixed models including socio-demographic, climatic and landcover variables and estimated variable importance via multi-model inference. We find that socio-demographic variables, and not environmental variables, are strong predictors of the spatial distribution of disease risk at both individual and commune-level (cluster of villages) spatial scales. Climatic variables predicted strong seasonality in DD, with the highest incidence in colder, drier months, but did not explain spatial patterns. Interestingly, the occurrence of a national holiday was highly predictive of increased DD incidence, highlighting the need for including cultural factors in modelling efforts. Our findings suggest that precision health mapping efforts that do not include socio-demographic covariates may have reduced explanatory power at the local scale. More research is needed to better define the set of conditions under which the application of precision health mapping can be operationally useful to local public health professionals.


Asunto(s)
Diarrea , Niño , Diarrea/epidemiología , Humanos , Incidencia , Modelos Lineales , Madagascar/epidemiología , Factores de Riesgo
4.
Glob Chang Biol ; 27(1): 84-93, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33037740

RESUMEN

In the aftermath of the 2015 pandemic of Zika virus (ZIKV), concerns over links between climate change and emerging arboviruses have become more pressing. Given the potential that much of the world might remain at risk from the virus, we used a previously established temperature-dependent transmission model for ZIKV to project climate change impacts on transmission suitability risk by mid-century (a generation into the future). Based on these model predictions, in the worst-case scenario, over 1.3 billion new people could face suitable transmission temperatures for ZIKV by 2050. The next generation will face substantially increased ZIKV transmission temperature suitability in North America and Europe, where naïve populations might be particularly vulnerable. Mitigating climate change even to moderate emissions scenarios could significantly reduce global expansion of climates suitable for ZIKV transmission, potentially protecting around 200 million people. Given these suitability risk projections, we suggest an increased priority on research establishing the immune history of vulnerable populations, modeling when and where the next ZIKV outbreak might occur, evaluating the efficacy of conventional and novel intervention measures, and increasing surveillance efforts to prevent further expansion of ZIKV.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Europa (Continente) , Humanos , Mosquitos Vectores , América del Norte , Temperatura , Infección por el Virus Zika/epidemiología
5.
Int J Health Geogr ; 20(1): 8, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579294

RESUMEN

BACKGROUND: Reliable surveillance systems are essential for identifying disease outbreaks and allocating resources to ensure universal access to diagnostics and treatment for endemic diseases. Yet, most countries with high disease burdens rely entirely on facility-based passive surveillance systems, which miss the vast majority of cases in rural settings with low access to health care. This is especially true for malaria, for which the World Health Organization estimates that routine surveillance detects only 14% of global cases. The goal of this study was to develop a novel method to obtain accurate estimates of disease spatio-temporal incidence at very local scales from routine passive surveillance, less biased by populations' financial and geographic access to care. METHODS: We use a geographically explicit dataset with residences of the 73,022 malaria cases confirmed at health centers in the Ifanadiana District in Madagascar from 2014 to 2017. Malaria incidence was adjusted to account for underreporting due to stock-outs of rapid diagnostic tests and variable access to healthcare. A benchmark multiplier was combined with a health care utilization index obtained from statistical models of non-malaria patients. Variations to the multiplier and several strategies for pooling neighboring communities together were explored to allow for fine-tuning of the final estimates. Separate analyses were carried out for individuals of all ages and for children under five. Cross-validation criteria were developed based on overall incidence, trends in financial and geographical access to health care, and consistency with geographic distribution in a district-representative cohort. The most plausible sets of estimates were then identified based on these criteria. RESULTS: Passive surveillance was estimated to have missed about 4 in every 5 malaria cases among all individuals and 2 out of every 3 cases among children under five. Adjusted malaria estimates were less biased by differences in populations' financial and geographic access to care. Average adjusted monthly malaria incidence was nearly four times higher during the high transmission season than during the low transmission season. By gathering patient-level data and removing systematic biases in the dataset, the spatial resolution of passive malaria surveillance was improved over ten-fold. Geographic distribution in the adjusted dataset revealed high transmission clusters in low elevation areas in the northeast and southeast of the district that were stable across seasons and transmission years. CONCLUSIONS: Understanding local disease dynamics from routine passive surveillance data can be a key step towards achieving universal access to diagnostics and treatment. Methods presented here could be scaled-up thanks to the increasing availability of e-health disease surveillance platforms for malaria and other diseases across the developing world.


Asunto(s)
Sistemas de Información en Salud , Malaria , Niño , Accesibilidad a los Servicios de Salud , Humanos , Incidencia , Malaria/diagnóstico , Malaria/epidemiología , Estaciones del Año
6.
Int J Health Geogr ; 19(1): 27, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631348

RESUMEN

BACKGROUND: Geographical accessibility to health facilities remains one of the main barriers to access care in rural areas of the developing world. Although methods and tools exist to model geographic accessibility, the lack of basic geographic information prevents their widespread use at the local level for targeted program implementation. The aim of this study was to develop very precise, context-specific estimates of geographic accessibility to care in a rural district of Madagascar to help with the design and implementation of interventions that improve access for remote populations. METHODS: We used a participatory approach to map all the paths, residential areas, buildings and rice fields on OpenStreetMap (OSM). We estimated shortest routes from every household in the District to the nearest primary health care center (PHC) and community health site (CHS) with the Open Source Routing Machine (OSMR) tool. Then, we used remote sensing methods to obtain a high resolution land cover map, a digital elevation model and rainfall data to model travel speed. Travel speed models were calibrated with field data obtained by GPS tracking in a sample of 168 walking routes. Model results were used to predict travel time to seek care at PHCs and CHSs for all the shortest routes estimated earlier. Finally, we integrated geographical accessibility results into an e-health platform developed with R Shiny. RESULTS: We mapped over 100,000 buildings, 23,000 km of footpaths, and 4925 residential areas throughout Ifanadiana district; these data are freely available on OSM. We found that over three quarters of the population lived more than one hour away from a PHC, and 10-15% lived more than 1 h away from a CHS. Moreover, we identified areas in the North and East of the district where the nearest PHC was further than 5 h away, and vulnerable populations across the district with poor geographical access (> 1 h) to both PHCs and CHSs. CONCLUSION: Our study demonstrates how to improve geographical accessibility modeling so that results can be context-specific and operationally actionable by local health actors. The importance of such approaches is paramount for achieving universal health coverage (UHC) in rural areas throughout the world.


Asunto(s)
Accesibilidad a los Servicios de Salud , Caminata , Geografía , Instituciones de Salud , Humanos , Población Rural
7.
BMC Pediatr ; 20(1): 108, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32138722

RESUMEN

BACKGROUND: 50% of Malagasy children have moderate to severe stunting. In 2016, a new 10 year National Nutrition Action Plan (PNAN III) was initiated to help address stunting and developmental delay. We report factors associated with risk of developmental delay in 3 and 4 year olds in the rural district of Ifanadiana in southeastern Madagascar in 2016. METHODS: The data are from a cross-sectional analysis of the 2016 wave of IHOPE panel data (a population-representative cohort study begun in 2014). We interviewed women ages 15-49 using the MICS Early Child Development Indicator (ECDI) module, which includes questions for physical, socio-emotional, learning and literacy/numeracy domains. We analyzed ECDI data using standardized z scores for relative relationships for 2 outcomes: at-risk-for-delay vs. an international standard, and lower-development-than-peers if ECDI z scores were > 1 standard deviation below study mean. Covariates included demographics, adult involvement, household environment, and selected child health factors. Variables significant at alpha of 0.1 were included a multivariable model; final models used backward stepwise regression, clustered at the sampling level. RESULTS: Of 432 children ages 3 and 4 years, 173 (40%) were at risk for delay compared to international norms and 68 children (16.0%) had lower-development than peers. This was driven mostly by the literacy/numeracy domain, with only 7% of children considered developmentally on track in that domain. 50.5% of children had moderate to severe stunting. 76 (17.6%) had > = 4 stimulation activities in past 3 days. Greater paternal engagement (OR 1.5 (1.09, 2.07)) was associated with increased delay vs. international norms. Adolescent motherhood (OR. 4.09 (1.40, 11.87)) decreased children's development vs. peers. Engagement from a non-parental adult reduced odds of delay for both outcomes (OR (95%CI = 0.76 (0.63, 0.91) & 0.27 (0.15, 0 48) respectively). Stunting was not associated with delay risk (1.36 (0.85, 2.15) or low development (0.92 (0.48, 1.78)) when controlling for other factors. CONCLUSIONS: In this setting of high child malnutrition, stunting is not independently associated with developmental risk. A low proportion of children receive developmentally supportive stimulation from adults, but non-parent adults provide more stimulation in general than either mother or father. Stimulation from non-parent adults is associated with lower odds of delay.


Asunto(s)
Discapacidades del Desarrollo , Trastornos del Crecimiento , Desnutrición , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Estudios Transversales , Discapacidades del Desarrollo/epidemiología , Femenino , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/etiología , Humanos , Lactante , Madagascar/epidemiología , Masculino , Desnutrición/diagnóstico , Desnutrición/epidemiología , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
8.
PLoS Med ; 16(8): e1002869, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31430286

RESUMEN

BACKGROUND: In order to reach the health-related Sustainable Development Goals (SDGs) by 2030, gains attained in access to primary healthcare must be matched by gains in the quality of services delivered. Despite the broad consensus around the need to address quality, studies on the impact of health system strengthening (HSS) have focused predominantly on measures of healthcare access. Here, we examine changes in the content of maternal and child care as a proxy for healthcare quality, to better evaluate the effectiveness of an HSS intervention in a rural district of Madagascar. The intervention aimed at improving system readiness at all levels of care (community health, primary health centers, district hospital) through facility renovations, staffing, equipment, and training, while removing logistical and financial barriers to medical care (e.g., ambulance network and user-fee exemptions). METHODS AND FINDINGS: We carried out a district-representative open longitudinal cohort study, with surveys administered to 1,522 households in the Ifanadiana district of Madagascar at the start of the HSS intervention in 2014, and again to 1,514 households in 2016. We examined changes in healthcare seeking behavior and outputs for sick-child care among children <5 years old, as well as for antenatal care and perinatal care among women aged 15-49. We used a difference-in-differences (DiD) analysis to compare trends between the intervention group (i.e., people living inside the HSS catchment area) and the non-intervention comparison group (i.e., the rest of the district). In addition, we used health facility-based surveys, monitoring service availability and readiness, to assess changes in the operational capacities of facilities supported by the intervention. The cohort study included 657 and 411 children (mean age = 2 years) reported to be ill in the 2014 and 2016 surveys, respectively (27.8% and 23.8% in the intervention group for each survey), as well as 552 and 524 women (mean age = 28 years) reported to have a live birth within the previous two years in the 2014 and 2016 surveys, respectively (31.5% and 29.6% in the intervention group for each survey). Over the two-year study period, the proportion of people who reported seeking care at health facilities experienced a relative change of +51.2% (from 41.4% in 2014 to 62.5% in 2016) and -7.1% (from 30.0% to 27.9%) in the intervention and non-intervention groups, respectively, for sick-child care (DiD p-value = 0.01); +11.4% (from 78.3% to 87.2%), and +10.3% (from 67.3% to 74.2%) for antenatal care (p-value = 0.75); and +66.2% (from 23.1% to 38.3%) and +28.9% (from 13.9% to 17.9%) for perinatal care (p-value = 0.13). Most indicators of care content, including rates of medication prescription and diagnostic test administration, appeared to increase more in the intervention compared to in the non-intervention group for the three areas of care we assessed. The reported prescription rate for oral rehydration therapy among children with diarrhea changed by +68.5% (from 29.6% to 49.9%) and -23.2% (from 17.8% to 13.7%) in the intervention and non-intervention groups, respectively (p-value = 0.05). However, trends observed in the care content varied widely by indicator and did not always match the large apparent increases observed in care seeking behavior, particularly for antenatal care, reflecting important gaps in the provision of essential health services for individuals who sought care. The main limitation of this study is that the intervention catchment was not randomly allocated, and some demographic indicators were better for this group at baseline than for the rest of the district, which could have impacted the trends observed. CONCLUSION: Using a district-representative longitudinal cohort to assess the content of care delivered to the population, we found a substantial increase over the two-year study period in the prescription rate for ill children and in all World Health Organization (WHO)-recommended perinatal care outputs assessed in the intervention group, with more modest changes observed in the non-intervention group. Despite improvements associated with the HSS intervention, this study highlights the need for further quality improvement in certain areas of the district's healthcare system. We show how content of care, measured through standard population-based surveys, can be used as a component of HSS impact evaluations, enabling healthcare leaders to track progress as well as identify and address specific gaps in the provision of services that extend beyond care access.


Asunto(s)
Servicios de Salud del Niño/estadística & datos numéricos , Servicios de Salud Materna/estadística & datos numéricos , Mejoramiento de la Calidad , Servicios de Salud Rural/estadística & datos numéricos , Adolescente , Adulto , Niño , Preescolar , Femenino , Encuestas de Atención de la Salud , Humanos , Estudios Longitudinales , Madagascar , Masculino , Persona de Mediana Edad , Aceptación de la Atención de Salud/estadística & datos numéricos , Indicadores de Calidad de la Atención de Salud , Calidad de la Atención de Salud/estadística & datos numéricos , Programas Médicos Regionales/estadística & datos numéricos , Adulto Joven
9.
Proc Biol Sci ; 285(1884)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111605

RESUMEN

Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C-34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.


Asunto(s)
Aedes/fisiología , Cambio Climático , Mosquitos Vectores/fisiología , Temperatura , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Aedes/virología , Animales , Modelos Biológicos , Mosquitos Vectores/virología , Estaciones del Año , Urbanización
10.
PLoS Biol ; 12(4): e1001827, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24690902

RESUMEN

Understanding why some human populations remain persistently poor remains a significant challenge for both the social and natural sciences. The extremely poor are generally reliant on their immediate natural resource base for subsistence and suffer high rates of mortality due to parasitic and infectious diseases. Economists have developed a range of models to explain persistent poverty, often characterized as poverty traps, but these rarely account for complex biophysical processes. In this Essay, we argue that by coupling insights from ecology and economics, we can begin to model and understand the complex dynamics that underlie the generation and maintenance of poverty traps, which can then be used to inform analyses and possible intervention policies. To illustrate the utility of this approach, we present a simple coupled model of infectious diseases and economic growth, where poverty traps emerge from nonlinear relationships determined by the number of pathogens in the system. These nonlinearities are comparable to those often incorporated into poverty trap models in the economics literature, but, importantly, here the mechanism is anchored in core ecological principles. Coupled models of this sort could be usefully developed in many economically important biophysical systems--such as agriculture, fisheries, nutrition, and land use change--to serve as foundations for deeper explorations of how fundamental ecological processes influence structural poverty and economic development.


Asunto(s)
Desarrollo Económico , Dinámica Poblacional , Pobreza/economía , Medio Social , Enfermedades Transmisibles/economía , Conservación de los Recursos Naturales , Humanos , Modelos Teóricos , Factores Socioeconómicos
12.
PLoS Biol ; 10(12): e1001456, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300379

RESUMEN

While most of the world is thought to be on long-term economic growth paths, more than one-sixth of the world is roughly as poor today as their ancestors were hundreds of years ago. The majority of the extremely poor live in the tropics. The latitudinal gradient in income is highly suggestive of underlying biophysical drivers, of which disease conditions are an especially salient example. However, conclusions have been confounded by the simultaneous causality between income and disease, in addition to potentially spurious relationships. We use a simultaneous equations model to estimate the relative effects of vector-borne and parasitic diseases (VBPDs) and income on each other, controlling for other factors. Our statistical model indicates that VBPDs have systematically affected economic development, evident in contemporary levels of per capita income. The burden of VBDPs is, in turn, determined by underlying ecological conditions. In particular, the model predicts it to rise as biodiversity falls. Through these positive effects on human health, the model thus identifies measurable economic benefits of biodiversity.


Asunto(s)
Biodiversidad , Renta , Enfermedades Parasitarias/economía , Enfermedades Parasitarias/epidemiología , Animales , Costo de Enfermedad , Vectores de Enfermedades , Geografía , Humanos , Modelos Estadísticos
13.
Conserv Biol ; 28(1): 234-43, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24405165

RESUMEN

Wildlife consumption can be viewed as an ecosystem provisioning service (the production of a material good through ecological functioning) because of wildlife's ability to persist under sustainable levels of harvest. We used the case of wildlife harvest and consumption in northeastern Madagascar to identify the distribution of these services to local households and communities to further our understanding of local reliance on natural resources. We inferred these benefits from demand curves built with data on wildlife sales transactions. On average, the value of wildlife provisioning represented 57% of annual household cash income in local communities from the Makira Natural Park and Masoala National Park, and harvested areas produced an economic return of U.S.$0.42 ha(-1) · year(-1). Variability in value of harvested wildlife was high among communities and households with an approximate 2 orders of magnitude difference in the proportional value of wildlife to household income. The imputed price of harvested wildlife and its consumption were strongly associated (p< 0.001), and increases in price led to reduced harvest for consumption. Heightened monitoring and enforcement of hunting could increase the costs of harvesting and thus elevate the price and reduce consumption of wildlife. Increased enforcement would therefore be beneficial to biodiversity conservation but could limit local people's food supply. Specifically, our results provide an estimate of the cost of offsetting economic losses to local populations from the enforcement of conservation policies. By explicitly estimating the welfare effects of consumed wildlife, our results may inform targeted interventions by public health and development specialists as they allocate sparse funds to support regions, households, or individuals most vulnerable to changes in access to wildlife.


Asunto(s)
Conservación de los Recursos Naturales/economía , Abastecimiento de Alimentos , Mamíferos/fisiología , Animales , Biodiversidad , Humanos , Madagascar , Población Rural
14.
PLOS Glob Public Health ; 4(3): e0002888, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470906

RESUMEN

Despite widespread adoption of community health (CH) systems, there are evidence gaps to support global best practice in remote settings where access to health care is limited and community health workers (CHWs) may be the only available providers. The nongovernmental health organization Pivot partnered with the Ministry of Public Health (MoPH) to pilot a new enhanced community health (ECH) model in rural Madagascar, where one CHW provided care at a stationary CH site while additional CHWs provided care via proactive household visits. The program included professionalization of the CHW workforce (i.e., targeted recruitment, extended training, financial compensation) and twice monthly supervision of CHWs. For the first eighteen months of implementation (October 2019-March 2021), we compared utilization and proxy measures of quality of care in the intervention commune (local administrative unit) and five comparison communes with strengthened community health programs under a different model. This allowed for a quasi-experimental study design of the impact of ECH on health outcomes using routinely collected programmatic data. Despite the substantial support provided to other CHWs, the results show statistically significant improvements in nearly every indicator. Sick child visits increased by more than 269.0% in the intervention following ECH implementation. Average per capita monthly under-five visits were 0.25 in the intervention commune and 0.19 in the comparison communes (p<0.01). In the intervention commune, 40.3% of visits were completed at the household via proactive care. CHWs completed all steps of the iCCM protocol in 85.4% of observed visits in the intervention commune (vs 57.7% in the comparison communes, p-value<0.01). This evaluation demonstrates that ECH can improve care access and the quality of service delivery in a rural health district. Further research is needed to assess the generalizability of results and the feasibility of national scale-up as the MoPH continues to define the national community health program.

15.
Sci Rep ; 13(1): 21288, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042891

RESUMEN

Data on population health are vital to evidence-based decision making but are rarely adequately localized or updated in continuous time. They also suffer from low ascertainment rates, particularly in rural areas where barriers to healthcare can cause infrequent touch points with the health system. Here, we demonstrate a novel statistical method to estimate the incidence of endemic diseases at the community level from passive surveillance data collected at primary health centers. The zero-corrected, gravity-model (ZERO-G) estimator explicitly models sampling intensity as a function of health facility characteristics and statistically accounts for extremely low rates of ascertainment. The result is a standardized, real-time estimate of disease incidence at a spatial resolution nearly ten times finer than typically reported by facility-based passive surveillance systems. We assessed the robustness of this method by applying it to a case study of field-collected malaria incidence rates from a rural health district in southeastern Madagascar. The ZERO-G estimator decreased geographic and financial bias in the dataset by over 90% and doubled the agreement rate between spatial patterns in malaria incidence and incidence estimates derived from prevalence surveys. The ZERO-G estimator is a promising method for adjusting passive surveillance data of common, endemic diseases, increasing the availability of continuously updated, high quality surveillance datasets at the community scale.


Asunto(s)
Enfermedades Endémicas , Malaria , Humanos , Malaria/epidemiología , Aceptación de la Atención de Salud , Madagascar , Incidencia
16.
Int J Epidemiol ; 52(6): 1745-1755, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37793001

RESUMEN

INTRODUCTION: Three years into the pandemic, there remains significant uncertainty about the true infection and mortality burden of COVID-19 in the World Health Organization Africa region. High quality, population-representative studies in Africa are rare and tend to be conducted in national capitals or large cities, leaving a substantial gap in our understanding of the impact of COVID-19 in rural, low-resource settings. Here, we estimated the spatio-temporal morbidity and mortality burden associated with COVID-19 in a rural health district of Madagascar until the first half of 2021. METHODS: We integrated a nested seroprevalence study within a pre-existing longitudinal cohort conducted in a representative sample of 1600 households in Ifanadiana District, Madagascar. Socio-demographic and health information was collected in combination with dried blood spots for about 6500 individuals of all ages, which were analysed to detect IgG and IgM antibodies against four specific proteins of SARS-CoV-2 in a bead-based multiplex immunoassay. We evaluated spatio-temporal patterns in COVID-19 infection history and its associations with several geographic, socio-economic and demographic factors via logistic regressions. RESULTS: Eighteen percent of people had been infected by April-June 2021, with seroprevalence increasing with individuals' age. COVID-19 primarily spread along the only paved road and in major towns during the first epidemic wave, subsequently spreading along secondary roads during the second wave to more remote areas. Wealthier individuals and those with occupations such as commerce and formal employment were at higher risk of being infected in the first wave. Adult mortality increased in 2020, particularly for older men for whom it nearly doubled up to nearly 40 deaths per 1000. Less than 10% of mortality in this period would be directly attributed to COVID-19 deaths if known infection fatality ratios are applied to observed seroprevalence in the district. CONCLUSION: Our study provides a very granular understanding on COVID-19 transmission and mortality in a rural population of sub-Saharan Africa and suggests that the disease burden in these areas may have been substantially underestimated.


Asunto(s)
COVID-19 , Adulto , Masculino , Humanos , Anciano , Estudios Seroepidemiológicos , SARS-CoV-2 , Madagascar/epidemiología , Población Rural , Morbilidad , Pandemias , Anticuerpos Antivirales
17.
PLOS Glob Public Health ; 3(2): e0001607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36963091

RESUMEN

While much progress has been achieved over the last decades, malaria surveillance and control remain a challenge in countries with limited health care access and resources. High-resolution predictions of malaria incidence using routine surveillance data could represent a powerful tool to health practitioners by targeting malaria control activities where and when they are most needed. Here, we investigate the predictors of spatio-temporal malaria dynamics in rural Madagascar, estimated from facility-based passive surveillance data. Specifically, this study integrates climate, land-use, and representative household survey data to explain and predict malaria dynamics at a high spatial resolution (i.e., by Fokontany, a cluster of villages) relevant to health care practitioners. Combining generalized linear mixed models (GLMM) and path analyses, we found that socio-economic, land use and climatic variables are all important predictors of monthly malaria incidence at fine spatial scales, via both direct and indirect effects. In addition, out-of-sample predictions from our model were able to identify 58% of the Fokontany in the top quintile for malaria incidence and account for 77% of the variation in the Fokontany incidence rank. These results suggest that it is possible to build a predictive framework using environmental and social predictors that can be complementary to standard surveillance systems and help inform control strategies by field actors at local scales.

18.
BMJ Glob Health ; 7(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012969

RESUMEN

BACKGROUND: To reach global immunisation goals, national programmes need to balance routine immunisation at health facilities with vaccination campaigns and other outreach activities (eg, vaccination weeks), which boost coverage at particular times and help reduce geographical inequalities. However, where routine immunisation is weak, an over-reliance on vaccination campaigns may lead to heterogeneous coverage. Here, we assessed the impact of a health system strengthening (HSS) intervention on the relative contribution of routine immunisation and outreach activities to reach immunisation goals in rural Madagascar. METHODS: We obtained data from health centres in Ifanadiana district on the monthly number of recommended vaccines (BCG, measles, diphtheria, tetanus and pertussis (DTP) and polio) delivered to children, during 2014-2018. We also analysed data from a district-representative cohort carried out every 2 years in over 1500 households in 2014-2018. We compared changes inside and outside the HSS catchment in the delivery of recommended vaccines, population-level vaccination coverage, geographical and economic inequalities in coverage, and timeliness of vaccination. The impact of HSS was quantified via mixed-effects logistic regressions. RESULTS: The HSS intervention was associated with a significant increase in immunisation rates (OR between 1.22 for measles and 1.49 for DTP), which diminished over time. Outreach activities were associated with a doubling in immunisation rates, but their effect was smaller in the HSS catchment. Analysis of cohort data revealed that HSS was associated with higher vaccination coverage (OR between 1.18 per year of HSS for measles and 1.43 for BCG), a reduction in economic inequality, and a higher proportion of timely vaccinations. Yet, the lower contribution of outreach activities in the HSS catchment was associated with persistent inequalities in geographical coverage, which prevented achieving international coverage targets. CONCLUSION: Investment in stronger primary care systems can improve vaccination coverage, reduce inequalities and improve the timeliness of vaccination via increases in routine immunisations.


Asunto(s)
Población Rural , Cobertura de Vacunación , Niño , Humanos , Inmunización , Madagascar , Vacunación
19.
PLOS Glob Public Health ; 2(12): e0001028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962826

RESUMEN

Geographic distance is a critical barrier to healthcare access, particularly for rural communities with poor transportation infrastructure who rely on non-motorized transportation. There is broad consensus on the importance of community health workers (CHWs) to reduce the effects of geographic isolation on healthcare access. Due to a lack of fine-scale spatial data and individual patient records, little is known about the precise effects of CHWs on removing geographic barriers at this level of the healthcare system. Relying on a high-quality, crowd-sourced dataset that includes all paths and buildings in the area, we explored the impact of geographic distance from CHWs on the use of CHW services for children under 5 years in the rural district of Ifanadiana, southeastern Madagascar from 2018-2021. We then used this analysis to determine key features of an optimal geographic design of the CHW system, specifically optimizing a single CHW location or installing additional CHW sites. We found that consultation rates by CHWs decreased with increasing distance patients travel to the CHW by approximately 28.1% per km. The optimization exercise revealed that the majority of CHW sites (50/80) were already in an optimal location or shared an optimal location with a primary health clinic. Relocating the remaining CHW sites based on a geographic optimum was predicted to increase consultation rates by only 7.4%. On the other hand, adding a second CHW site was predicted to increase consultation rates by 31.5%, with a larger effect in more geographically dispersed catchments. Geographic distance remains a barrier at the level of the CHW, but optimizing CHW site location based on geography alone will not result in large gains in consultation rates. Rather, alternative strategies, such as the creation of additional CHW sites or the implementation of proactive care, should be considered.

20.
Lancet Planet Health ; 6(11): e870-e879, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36370725

RESUMEN

BACKGROUND: Billions of people living in poverty are at risk of environmentally mediated infectious diseases-that is, pathogens with environmental reservoirs that affect disease persistence and control and where environmental control of pathogens can reduce human risk. The complex ecology of these diseases creates a global health problem not easily solved with medical treatment alone. METHODS: We quantified the current global disease burden caused by environmentally mediated infectious diseases and used a structural equation model to explore environmental and socioeconomic factors associated with the human burden of environmentally mediated pathogens across all countries. FINDINGS: We found that around 80% (455 of 560) of WHO-tracked pathogen species known to infect humans are environmentally mediated, causing about 40% (129 488 of 359 341 disability-adjusted life years) of contemporary infectious disease burden (global loss of 130 million years of healthy life annually). The majority of this environmentally mediated disease burden occurs in tropical countries, and the poorest countries carry the highest burdens across all latitudes. We found weak associations between disease burden and biodiversity or agricultural land use at the global scale. In contrast, the proportion of people with rural poor livelihoods in a country was a strong proximate indicator of environmentally mediated infectious disease burden. Political stability and wealth were associated with improved sanitation, better health care, and lower proportions of rural poverty, indirectly resulting in lower burdens of environmentally mediated infections. Rarely, environmentally mediated pathogens can evolve into global pandemics (eg, HIV, COVID-19) affecting even the wealthiest communities. INTERPRETATION: The high and uneven burden of environmentally mediated infections highlights the need for innovative social and ecological interventions to complement biomedical advances in the pursuit of global health and sustainability goals. FUNDING: Bill & Melinda Gates Foundation, National Institutes of Health, National Science Foundation, Alfred P. Sloan Foundation, National Institute for Mathematical and Biological Synthesis, Stanford University, and the US Defense Advanced Research Projects Agency.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Carga Global de Enfermedades , Humanos , Enfermedades Transmisibles/epidemiología , Salud Global , Factores Socioeconómicos , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA