Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(25): 252501, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32639790

RESUMEN

Transverse single-spin asymmetries of very forward neutral pions generated in polarized p+p collisions allow us to understand the production mechanism in terms of perturbative and nonperturbative strong interactions. During 2017, the RHICf Collaboration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized p+p collisions at sqrt[s]=510 GeV. The large nonzero asymmetries increasing both in longitudinal momentum fraction x_{F} and transverse momentum p_{T} have been observed at low transverse momentum p_{T}<1 GeV/c for the first time, at this collision energy. The asymmetries show an approximate x_{F} scaling in the p_{T} region where nonperturbative processes are expected to dominate. A non-negligible contribution from soft processes may be necessary to explain the nonzero neutral pion asymmetries.

2.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30530534

RESUMEN

Muon radiography, also known as muography, is an imaging technique that provides information on the mass density distribution inside large objects. Muons are naturally produced in the interactions of cosmic rays in the Earth's atmosphere. The physical process exploited by muography is the attenuation of the muon flux, that depends on the thickness and density of matter that muons cross in the course of their trajectory. A particle detector with tracking capability allows the measurement of the muons flux as a function of the muon direction. The comparison of the measured muon flux with the expected one gives information on the distribution of the density of matter, in particular, on the presence of cavities. In this article, the measurement performed at Mt. Echia in Naples (Saracino 2017 Sci. Rep. 7, 1181. (doi:10.1038/s41598-017-01277-3)), will be discussed as a practical example of the possible application of muography in archaeology and civil engineering.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

3.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30530539

RESUMEN

A novel algorithm developed within muon radiography to localize objects or cavities hidden inside large material volumes was recently proposed by some of the authors (Bonechi et al. 2015 J. Instrum. 10, P02003 (doi:10.1088/1748-0221/10/02/P02003)). The algorithm, based on muon back projection, helps to estimate the three-dimensional position and the transverse extension of detected objects without the need for measurements from different points of view, which would be required to make a triangulation. This algorithm can now be tested owing to the availability of real data collected both in laboratory tests and from real-world measurements. The methodology and some test results are presented in this paper.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

4.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30530544

RESUMEN

The dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are under way to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only known reinforcement is a wood chain 7.75 m above the springing of the Cupola. Multiple scattering muon radiography is a non-destructive imaging method that can be used to image the interior of the dome's wall and therefore ascertain the layout and status of any iron substructure in it. A demonstration measurement was performed at the Los Alamos National Laboratory on a mock-up wall to show the feasibility of the work proposed, and a lightweight and modular imaging system is currently under construction. We will discuss here the results of the demonstration measurement and the potential of the proposed technique, describe the imaging system under construction and outline the plans for the measurement.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

5.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30530551

RESUMEN

Cosmic-ray muon radiography (muography), an imaging technique that can provide measurements of rock densities within the top few 100 m of a volcanic cone, has now achieved a spatial resolution of the order of 10 m in optimal detection conditions. Muography provides images of the top region of a volcano edifice with a resolution that is considerably better than that typically achieved with other conventional methods (i.e. gravimetric). We expect such precise measurements, to provide us with information on anomalies in the rock density distribution, which can be affected by dense lava conduits, low-density magma supply paths or the compression with the depth of the overlying soil. The MUon RAdiography of VESuvius (MURAVES) project is now in its final phase of construction and deployment. Up to four muon hodoscopes, each with a surface of roughly 1 m2, will be installed on the slope of Vesuvius and take data for at least 12 months. We will use the muographic profiles, combined with data from gravimetric and seismic measurement campaigns, to determine the stratigraphy of the lava plug at the bottom of the Vesuvius crater, in order to infer potential eruption pathways. While the MURAVES project unfolds, others are using emulsion detectors on Stromboli to study the lava conduits at the top of the volcano. These measurements are ongoing: they have completed two measurement campaigns and are now performing the first data analysis.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

6.
Nature ; 458(7238): 607-9, 2009 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19340076

RESUMEN

Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a 'secondary source'. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be 'primary sources'. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5-100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.

7.
Phys Rev Lett ; 105(12): 121101, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20867623

RESUMEN

The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.

8.
Sci Rep ; 7(1): 1181, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446789

RESUMEN

Muography is an imaging technique based on the measurement of absorption profiles for muons as they pass through rocks and earth. Muons are produced in the interactions of high-energy cosmic rays in the Earth's atmosphere. The technique is conceptually similar to usual X-ray radiography, but with extended capabilities of investigating over much larger thicknesses of matter thanks to the penetrating power of high-energy muons. Over the centuries a complex system of cavities has been excavated in the yellow tuff of Mt. Echia, the site of the earliest settlement of the city of Naples in the 8th century BC. A new generation muon detector designed by us, was installed under a total rock overburden of about 40 metres. A 26 days pilot run provided about 14 millions of muon events. A comparison of the measured and expected muon fluxes improved the knowledge of the average rock density. The observation of known cavities proved the validity of the muographic technique. Hints on the existence of a so far unknown cavity was obtained. The success of the investigation reported here demonstrates the substantial progress of muography in underground imaging and is likely to open new avenues for its widespread utilisation.

9.
Science ; 332(6025): 69-72, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385721

RESUMEN

Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in our Galaxy. We report precision measurements of the proton and helium spectra in the rigidity range 1 gigavolt to 1.2 teravolts performed by the satellite-borne experiment PAMELA (payload for antimatter matter exploration and light-nuclei astrophysics). We find that the spectral shapes of these two species are different and cannot be described well by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.

10.
Phys Rev Lett ; 102(5): 051101, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19257498

RESUMEN

A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA