Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 31(10): 2796-2813, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305041

RESUMEN

Hydrothermal vents form archipelagos of ephemeral deep-sea habitats that raise interesting questions about the evolution and dynamics of the associated endemic fauna, constantly subject to extinction-recolonization processes. These metal-rich environments are coveted for the mineral resources they harbour, thus raising recent conservation concerns. The evolutionary fate and demographic resilience of hydrothermal species strongly depend on the degree of connectivity among and within their fragmented metapopulations. In the deep sea, however, assessing connectivity is difficult and usually requires indirect genetic approaches. Improved detection of fine-scale genetic connectivity is now possible based on genome-wide screening for genetic differentiation. Here, we explored population connectivity in the hydrothermal vent snail Ifremeria nautilei across its species range encompassing five distinct back-arc basins in the Southwest Pacific. The global analysis, based on 10,570 single nucleotide polymorphism (SNP) markers derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), depicted two semi-isolated and homogeneous genetic clusters. Demogenetic modeling suggests that these two groups began to diverge about 70,000 generations ago, but continue to exhibit weak and slightly asymmetrical gene flow. Furthermore, a careful analysis of outlier loci showed subtle limitations to connectivity between neighbouring basins within both groups. This finding indicates that migration is not strong enough to totally counterbalance drift or local selection, hence questioning the potential for demographic resilience at this latter geographical scale. These results illustrate the potential of large genomic data sets to understand fine-scale connectivity patterns in hydrothermal vents and the deep sea.


Asunto(s)
Respiraderos Hidrotermales , Animales , Ecosistema , Flujo Génico , Análisis de Secuencia de ADN , Caracoles/genética
2.
Genetica ; 150(5): 247-262, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36083388

RESUMEN

Correctly delimiting species and populations is a prerequisite for studies of connectivity, adaptation and conservation. Genomic data are particularly useful to test species differentiation for organisms with few informative morphological characters or low discrimination of cytoplasmic markers, as in Scleractinians. Here we applied Restriction site Associated DNA sequencing (RAD-sequencing) to the study of species differentiation and genetic structure in populations of Pocillopora spp. from Oman and French Polynesia, with the objectives to test species hypotheses, and to study the genetic structure among sampling sites within species. We focused here on coral colonies morphologically similar to P. acuta (damicornis type ß). We tested the impact of different filtering strategies on the stability of the results. The main genetic differentiation was observed between samples from Oman and French Polynesia. These samples corresponded to different previously defined primary species hypotheses (PSH), i.e., PSHs 12 and 13 in Oman, and PSH 5 in French Polynesia. In Oman, we did not observe any clear differentiation between the two putative species PSH 12 and 13, nor between sampling sites. In French Polynesia, where a single species hypothesis was studied, there was no differentiation between sites. Our analyses allowed the identification of clonal lineages in Oman and French Polynesia. The impact of clonality on genetic diversity is discussed in light of individual-based simulations.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Estructuras Genéticas , Metagenómica , Análisis de Secuencia de ADN , Especificidad de la Especie
3.
Heredity (Edinb) ; 129(3): 183-194, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764696

RESUMEN

House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.


Asunto(s)
Genoma , Endogamia , Animales , Evolución Biológica , Europa (Continente) , Humanos , Ratones , Nueva Zelanda
4.
J Fish Biol ; 100(2): 594-600, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34837218

RESUMEN

Reports of morphological differences between European anchovy (Engraulis cf. encrasicolus) from coastal and marine habitats have long existed in the ichthyologic literature and have given rise to a long-standing debate on their taxonomic status. More recently, molecular studies have confirmed the existence of genetic differentiation between the two anchovy ecotypes. Using ancestry-informative markers, we show that coastal anchovies throughout the Mediterranean share a common ancestry and that substantial genetic differentiation persists in different pairs of coastal/marine populations despite the presence of limited gene flow. On the basis of genetic and ecological arguments, we propose that coastal anchovies deserve a species status of their own (E. maeoticus) and argue that a unified taxonomical framework is critical for future research and management.


Asunto(s)
Peces , Alimentos Marinos , Animales , Ecosistema , Peces/genética , Flujo Génico , Flujo Genético
5.
Heredity (Edinb) ; 122(2): 150-171, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29795180

RESUMEN

North Africa is now recognized as a major area for the emergence and dispersal of anatomically modern humans from at least 315 kya. The Mediterranean Basin is thus particularly suited to study the role of climate versus human-mediated changes on the evolutionary history of species. The Algerian mouse (Mus spretus Lataste) is an endemic species from this basin, with its distribution restricted to North Africa (from Libya to Morocco), Iberian Peninsula and South of France. A rich paleontological record of M. spretus exists in North Africa, suggesting hypotheses concerning colonization pathways, and the demographic and morphologic history of this species. Here we combined genetic (3 mitochondrial DNA loci and 18 microsatellites) and climatic niche modeling data to infer the evolutionary history of the Algerian mouse. We collected 646 new individuals in 51 localities. Our results are consistent with an anthropogenic translocation of the Algerian mouse from North Africa to the Iberian Peninsula via Neolithic navigators, probably from the Tingitane Peninsula. Once arrived in Spain, suitable climatic conditions would then have favored the dispersion of the Algerian mice to France. The morphological differentiation observed between Spanish, French and North African populations could be explained by a founder effect and possibly local adaptation. This article helps to better understand the role of climate versus human-mediated changes on the evolutionary history of mammal species in the Mediterranean Basin.


Asunto(s)
Migración Animal , Ratones/crecimiento & desarrollo , África del Norte , Animales , Clima , ADN Mitocondrial/genética , Europa (Continente) , Ratones/clasificación , Ratones/genética , Ratones/fisiología , Repeticiones de Microsatélite , Filogenia , España
6.
Heredity (Edinb) ; 121(6): 579-593, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29713088

RESUMEN

Investigating gene flow between closely related species and its variation across the genome is important to understand how reproductive barriers shape genome divergence before speciation is complete. An efficient way to characterize differential gene flow is to study how the genetic interactions that take place in hybrid zones selectively filter gene exchange between species, leading to heterogeneous genome divergence. In the present study, genome-wide divergence and introgression patterns were investigated between two sole species, Solea senegalensis and Solea aegyptiaca, using restriction-associated DNA sequencing (RAD-Seq) to analyze samples taken from a transect spanning the hybrid zone. An integrative approach combining geographic and genomic clines methods with an analysis of individual locus introgression accounting for the demographic history of divergence was conducted. Our results showed that the two sole species have come into secondary contact postglacially, after experiencing a prolonged period (ca. 1.1 to 1.8 Myrs) of allopatric separation. Secondary contact resulted in the formation of a tension zone characterized by strong reproductive isolation, which only allowed introgression in a limited fraction of the genome. We found multiple evidence for a preferential direction of introgression in the S. aegyptiaca genetic background, indicating a possible recent or ongoing movement of the hybrid zone. Deviant introgression signals found in the opposite direction suggested that S. senegalensis could have possibly undergone adaptive introgression that has not yet spread throughout the entire species range. Our study thus illustrates the varied outcomes of genetic interactions between divergent gene pools that recently met after a long history of divergence.


Asunto(s)
Peces Planos/genética , Genoma , Geografía , Animales , Pool de Genes , Hibridación Genética , Probabilidad , Especificidad de la Especie
7.
Mamm Genome ; 28(9-10): 416-425, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28819774

RESUMEN

The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.


Asunto(s)
Animales Salvajes/genética , Secuenciación del Exoma , Variación Genética/genética , Genotipo , Ratones Endogámicos/genética , Fenotipo , Animales , Codón de Terminación , Simulación por Computador , Cruzamientos Genéticos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
8.
BMC Evol Biol ; 15: 26, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25888407

RESUMEN

BACKGROUND: The phylogeography of the house mouse (Mus musculus L.), an emblematic species for genetic and biomedical studies, is only partly understood, essentially because of a sampling bias towards its most peripheral populations in Europe, Asia and the Americas. Moreover, the present-day phylogeographic hypotheses stem mostly from the study of mitochondrial lineages. In this article, we complement the mtDNA studies with a comprehensive survey of nuclear markers (19 microsatellite loci) typed in 963 individuals from 47 population samples, with an emphasis on the putative Middle-Eastern centre of dispersal of the species. RESULTS: Based on correspondence analysis, distance and allele-sharing trees, we find a good coherence between geographical origin and genetic make-up of the populations. We thus confirm the clear distinction of the three best described peripheral subspecies, M. m. musculus, M. m. domesticus and M. m. castaneus. A large diversity was found in the Iranian populations, which have had an unclear taxonomic status to date. In addition to samples with clear affiliation to M. m. musculus and M. m. domesticus, we find two genetic groups in Central and South East Iran, which are as distinct from each other as they are from the south-east Asian M. m. castaneus. These groups were previously also found to harbor distinct mitochondrial haplotypes. CONCLUSION: We propose that the Iranian plateau is home to two more taxonomic units displaying complex primary and secondary relationships with their long recognized neighbours. This central region emerges as the area with the highest known diversity of mouse lineages within a restricted geographical area, designating it as the focal place to study the mechanisms of speciation and diversification of this species.


Asunto(s)
Ratones/clasificación , Ratones/genética , Filogeografía , Alelos , Animales , ADN Mitocondrial/genética , Genética de Población , Irán , Repeticiones de Microsatélite
9.
BMC Cancer ; 15: 792, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26499116

RESUMEN

BACKGROUND: Carcinogenesis affects not only humans but almost all metazoan species. Understanding the rules driving the occurrence of cancers in the wild is currently expected to provide crucial insights into identifying how some species may have evolved efficient cancer resistance mechanisms. Recently the absence of correlation across species between cancer prevalence and body size (coined as Peto's paradox) has attracted a lot of attention. Indeed, the disparity between this null hypothesis, where every cell is assumed to have an identical probability to undergo malignant transformation, and empirical observations is particularly important to understand, due to the fact that it could facilitate the identification of animal species that are more resistant to carcinogenesis than expected. Moreover it would open up ways to identify the selective pressures that may be involved in cancer resistance. However, Peto's paradox relies on several questionable assumptions, complicating the interpretation of the divergence between expected and observed cancer incidences. DISCUSSIONS: Here we review and challenge the different hypotheses on which this paradox relies on with the aim of identifying how this null hypothesis could be better estimated in order to provide a standard protocol to study the deviation between theoretical/theoretically predicted and observed cancer incidence. We show that due to the disproportion and restricted nature of available data on animal cancers, applying Peto's hypotheses at species level could result in erroneous conclusions, and actually assume the existence of a paradox. Instead of using species level comparisons, we propose an organ level approach to be a more accurate test of Peto's assumptions. SUMMARY: The accuracy of Peto's paradox assumptions are rarely valid and/or quantifiable, suggesting the need to reconsider the use of Peto's paradox as a null hypothesis in identifying the influence of natural selection on cancer resistance mechanisms.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Inmunidad Innata/inmunología , Neoplasias/genética , Neoplasias/inmunología , Animales , Evolución Biológica , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Humanos , Neoplasias/patología , Especificidad de la Especie
10.
Mol Biol Evol ; 29(10): 2949-55, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22490822

RESUMEN

Estimates of the proportion of amino acid substitutions that have been fixed by selection (α) vary widely among taxa, ranging from zero in humans to over 50% in Drosophila. This wide range may reflect differences in the efficacy of selection due to differences in the effective population size (N(e)). However, most comparisons have been made among distantly related organisms that differ not only in N(e) but also in many other aspects of their biology. Here, we estimate α in three closely related lineages of house mice that have a similar ecology but differ widely in N(e): Mus musculus musculus (N(e) ∼ 25,000-120,000), M. m. domesticus (N(e) ∼ 58,000-200,000), and M. m. castaneus (N(e) ∼ 200,000-733,000). Mice were genotyped using a high-density single nucleotide polymorphism array, and the proportions of replacement and silent mutations within subspecies were compared with those fixed between each subspecies and an outgroup, Mus spretus. There was significant evidence of positive selection in M. m. castaneus, the lineage with the largest N(e), with α estimated to be approximately 40%. In contrast, estimates of α for M. m. domesticus (α = 13%) and for M. m. musculus (α = 12 %) were much smaller. Interestingly, the higher estimate of α for M. m. castaneus appears to reflect not only more adaptive fixations but also more effective purifying selection. These results support the hypothesis that differences in N(e) contribute to differences among species in the efficacy of selection.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Ratones/genética , Densidad de Población , Sustitución de Aminoácidos/genética , Animales , Humanos , Dinámica Poblacional
11.
Mol Ecol ; 21(22): 5497-511, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23061421

RESUMEN

The genetic basis and evolutionary implications of local adaptation in high gene flow marine organisms are still poorly understood. In several Mediterranean fish species, alternative migration patterns exist between individuals entering coastal lagoons that offer favourable conditions for growth and those staying in the sea where environmental conditions are less subject to rapid and stressful change. Whether these coexisting strategies are phenotypically plastic or include a role for local adaptation through differential survival needs to be determined. Here, we explore the genetic basis of alternate habitat use in western Mediterranean populations of the gilthead sea bream (Sparus aurata). Samples from lagoonal and open-sea habitats were typed for three candidate gene microsatellite loci, seven anonymous microsatellites and 44 amplified fragment length polymorphism markers to test for genotype-environment associations. While anonymous markers globally indicated high levels of gene flow across geographic locations and habitats, non-neutral differentiation patterns correlated with habitat type were found at two candidate microsatellite loci located in the promoter region of the growth hormone and prolactin genes. Further analysis of these two genes revealed that a mechanism based on habitat choice alone could not explain the distribution of genotype frequencies at a regional scale, thus implying a role for differential survival between habitats. We also found an association between allele size and habitat type, which, in the light of previous studies, suggests that polymorphisms in the proximal promoter region could influence gene expression by modulating transcription factor binding, thus providing a potential explanatory link between genotype and growth phenotype in nature.


Asunto(s)
Interacción Gen-Ambiente , Repeticiones de Microsatélite , Dorada/genética , Alelos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Ecosistema , Flujo Génico , Frecuencia de los Genes , Variación Genética , Genética de Población , Genotipo , Mar Mediterráneo , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
12.
Genome Biol Evol ; 14(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038727

RESUMEN

Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.


Asunto(s)
ADN Mitocondrial , Cromosoma X , Alelos , Animales , Haplotipos , Humanos , Proteínas de la Membrana/genética , Ratones , Mutación , Vitamina K Epóxido Reductasas/genética
13.
Genes (Basel) ; 13(6)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35741747

RESUMEN

Deep hydrothermal vents are highly fragmented and unstable habitats at all temporal and spatial scales. Such environmental dynamics likely play a non-negligible role in speciation. Little is, however, known about the evolutionary processes that drive population-level differentiation and vent species isolation and, more specifically, how geography and habitat specialisation interplay in the species history of divergence. In this study, the species range and divergence of Alviniconcha snails that occupy active Western Pacific vent fields was assessed by using sequence variation data of the mitochondrial Cox1 gene, RNAseq, and ddRAD-seq. Combining morphological description and sequence datasets of the three species across five basins, we confirmed that A. kojimai, A. boucheti, and A. strummeri, while partially overlapping over their range, display high levels of divergence in the three genomic compartments analysed that usually encompass values retrieved for reproductively isolated species with divergences rang from 9% to 12.5% (mtDNA) and from 2% to 3.1% (nuDNA). Moreover, the three species can be distinguished on the basis of their external morphology by observing the distribution of bristles and the shape of the columella. According to this sampling, A. boucheti and A. kojimai form an east-to-west species abundance gradient, whereas A. strummeri is restricted to the Futuna Arc/Lau and North Fiji Basins. Surprisingly, population models with both gene flow and population size heterogeneities among genomes indicated that these three species are still able to exchange genes due to secondary contacts at some localities after a long period of isolation.


Asunto(s)
Respiraderos Hidrotermales , Animales , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Filogenia , Caracoles
14.
Proc Biol Sci ; 278(1708): 1034-43, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20880891

RESUMEN

The molecular signatures of the recent expansion of the western house mouse, Mus musculus domesticus, around the Mediterranean basin are investigated through the study of mitochondrial D-loop polymorphism on a 1313 individual dataset. When reducing the complexity of the matrilineal network to a series of haplogroups (HGs), our main results indicate that: (i) several HGs are recognized which seem to have almost simultaneously diverged from each other, confirming a recent expansion for the whole subspecies; (ii) some HGs are geographically delimited while others are widespread, indicative of multiple introductions or secondary exchanges; (iii) mice from the western and the eastern coasts of Africa harbour largely different sets of HGs; and (iv) HGs from the two shores of the Mediterranean are more similar in the west than in the east. This pattern is in keeping with the two-step westward expansion proposed by zooarchaeological data, an early one coincident with the Neolithic progression and limited to the eastern Mediterranean and a later one, particularly evident in the western Mediterranean, related to the generalization of maritime trade during the first millennium BC and onwards. The dispersal of mice along with humans, which continues until today, has for instance left complex footprints on the long ago colonized Cyprus or more simple ones on the much more recently populated Canary Islands.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Ratones/genética , África , Animales , Secuencia de Bases , Haplotipos , Región Mediterránea , Ratones/clasificación , Mitocondrias/genética , Datos de Secuencia Molecular , Filogenia , Polimorfismo Genético , Alineación de Secuencia , Análisis de Secuencia de ADN
15.
Mol Ecol ; 20(10): 2044-72, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21476991

RESUMEN

Genomic scans of multiple populations often reveal marker loci with greatly increased differentiation between populations. Often this differentiation coincides in space with contrasts in ecological factors, forming a genetic-environment association (GEA). GEAs imply a role for local adaptation, and so it is tempting to conclude that the strongly differentiated markers are themselves under ecologically based divergent selection, or are closely linked to loci under such selection. Here, we highlight an alternative and neglected explanation: intrinsic (i.e. environment-independent) pre- or post-zygotic genetic incompatibilities rather than local adaptation can be responsible for increased differentiation. Intrinsic genetic incompatibilities create endogenous barriers to gene flow, also known as tension zones, whose location can shift over time. However, tension zones have a tendency to become trapped by, and therefore to coincide with, exogenous barriers due to ecological selection. This coupling of endogenous and exogenous barriers can occur easily in spatially subdivided populations, even if the loci involved are unlinked. The result is that local adaptation explains where genetic breaks are positioned, but not necessarily their existence, which can be best explained by endogenous incompatibilities. More precisely, we show that (i) the coupling of endogenous and exogenous barriers can easily occur even when ecological selection is weak; (ii) when environmental heterogeneity is fine-grained, GEAs can emerge at incompatibility loci, but only locally, in places where habitats and gene pools are sufficiently intermingled to maintain linkage disequilibria between genetic incompatibilities, local-adaptation genes and neutral loci. Furthermore, the association between the locally adapted and intrinsically incompatible alleles (i.e. the sign of linkage disequilibrium between endogenous and exogenous loci) is arbitrary and can form in either direction. Reviewing results from the literature, we find that many predictions of our model are supported, including endogenous genetic barriers that coincide with environmental boundaries, local GEA in mosaic hybrid zones, and inverted or modified GEAs at distant locations. We argue that endogenous genetic barriers are often more likely than local adaptation to explain the majority of Fst-outlying loci observed in genome scan approaches - even when these are correlated to environmental variables.


Asunto(s)
Adaptación Fisiológica , Especiación Genética , Animales , Ecología , Ecosistema , Flujo Génico , Genética de Población , Modelos Teóricos
16.
Chem Pharm Bull (Tokyo) ; 59(6): 703-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21628904

RESUMEN

This work deals with the preparation and characterization of high-purity nanoparticles of γ-amino n-butyric acid (GABA) in order to enhance the efficiency of this drug. A sublimation procedure at low pressure was applied to GABA after improving the experimental parameters of this physical transformation. The elaboration of the molecule is solvent-free. The process does not change the chemical formula of the compound but modifies its physico-chemical characteristics. In this work, we present the experimental parameters for preparing monoclinic GABA nanoparticles. Their identification and physico-chemical properties were determined with a large number of investigations: Powder X-ray diffraction (PXRD), density and purity measurements, differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), calorimetric measurements (ΔH(dissolution) and C(p)), thermally stimulated current (TSC), and electrochemical impedance.


Asunto(s)
Nanopartículas/química , Ácido gamma-Aminobutírico/química , Rastreo Diferencial de Calorimetría , Espectroscopía Dieléctrica , Temperatura , Termogravimetría , Difracción de Rayos X
17.
BMC Ecol ; 10: 11, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20429891

RESUMEN

BACKGROUND: The relationship between environmental variation and induction of heat shock proteins (Hsps) has been much documented under experimental conditions. However, very little is known about such induction in natural populations acclimatised to prevailing environmental conditions. Furthermore, while induction of stress proteins has been well documented in response to environmental contaminants and thermal stressors, little is known about whether factors, such as extreme salinity, are also potential inductors. The black-chinned tilapia Sarotherodon melanotheron is unusual for its ability to colonise estuarine environments in West Africa that are characterised by extremely high salinities. The relationships between mRNA levels of the 70 kDa heat shock protein (Hsp70) and Na+, K+-ATPase1alpha (Naka) in the gills, environmental salinity, and a life-history trait (condition factor) were investigated in wild populations of this species sampled from three locations in the Saloum estuary, at salinities ranging from 40 to 100 psu. RESULTS: The highest Hsp70 and Naka mRNA levels, and the poorest condition factors were recorded in the most saline sampling site (100 psu). The Hsp70 and Naka mRNA were correlated amongst themselves and showed a direct positive correlation with environmental salinity, and a negative correlation with fish condition factor. Thus, the Hsp70 is constitutively overexpressed by S. melanotheron acclimatised to extreme hypersalinity. CONCLUSIONS: These results indicate that, although S. melanotheron can colonise extremely saline environments, the overexpression of Hsp70 combined with the higher Naka mRNA expression reveals that this represents a chronic stress. The induction of Hsp70 was, therefore, a biomarker of chronic hyper-osmotic stress which presumably can be linked to the impaired growth performance and precocious reproduction that have been demonstrated in the populations at the extremely saline sites.


Asunto(s)
Proteínas de Peces/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Salinidad , Tilapia/metabolismo , Aclimatación , Animales , Proteínas de Peces/genética , Proteínas HSP70 de Choque Térmico/genética , ARN Mensajero/metabolismo , Senegal , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrés Fisiológico , Tilapia/genética
18.
Evol Lett ; 4(3): 226-242, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32547783

RESUMEN

Understanding how new species arise through the progressive establishment of reproductive isolation (RI) barriers between diverging populations is a major goal in Evolutionary Biology. An important result of speciation genomics studies is that genomic regions involved in RI frequently harbor anciently diverged haplotypes that predate the reconstructed history of species divergence. The possible origins of these old alleles remain much debated, as they relate to contrasting mechanisms of speciation that are not yet fully understood. In the European sea bass (Dicentrarchus labrax), the genomic regions involved in RI between Atlantic and Mediterranean lineages are enriched for anciently diverged alleles of unknown origin. Here, we used haplotype-resolved whole-genome sequences to test whether divergent haplotypes could have originated from a closely related species, the spotted sea bass (Dicentrarchus punctatus). We found that an ancient admixture event between D. labrax and D. punctatus is responsible for the presence of shared derived alleles that segregate at low frequencies in both lineages of D. labrax. An exception to this was found within regions involved in RI between the two D. labrax lineages. In those regions, archaic tracts originating from D. punctatus locally reached high frequencies or even fixation in Atlantic genomes but were almost absent in the Mediterranean. We showed that the ancient admixture event most likely occurred between D. punctatus and the D. labrax Atlantic lineage, while Atlantic and Mediterranean D. labrax lineages were experiencing allopatric isolation. Our results suggest that local adaptive introgression and/or the resolution of genomic conflicts provoked by ancient admixture have probably contributed to the establishment of RI between the two D. labrax lineages.

19.
Genes (Basel) ; 11(4)2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272597

RESUMEN

Understanding the genetic underpinnings of fitness trade-offs across spatially variable environments remains a major challenge in evolutionary biology. In Mediterranean gilthead sea bream, first-year juveniles use various marine and brackish lagoon nursery habitats characterized by a trade-off between food availability and environmental disturbance. Phenotypic differences among juveniles foraging in different habitats rapidly appear after larval settlement, but the relative role of local selection and plasticity in phenotypic variation remains unclear. Here, we combine phenotypic and genetic data to address this question. We first report correlations of opposite signs between growth and condition depending on juvenile habitat type. Then, we use single nucleotide polymorphism (SNP) data obtained by Restriction Associated DNA (RAD) sequencing to search for allele frequency changes caused by a single generation of spatially varying selection between habitats. We found evidence for moderate selection operating at multiple loci showing subtle allele frequency shifts between groups of marine and brackish juveniles. We identified subsets of candidate outlier SNPs that, in interaction with habitat type, additively explain up to 3.8% of the variance in juvenile growth and 8.7% in juvenile condition; these SNPs also explained significant fraction of growth rate in an independent larval sample. Our results indicate that selective mortality across environments during early-life stages involves complex trade-offs between alternative growth strategies.


Asunto(s)
Interacción Gen-Ambiente , Aptitud Genética/genética , Dorada/genética , Selección Genética/genética , Animales , Ecosistema , Ambiente , Frecuencia de los Genes , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
20.
Sci Rep ; 10(1): 8276, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427845

RESUMEN

The house mouse (Mus musculus) represents the extreme of globalization of invasive mammals. However, the timing and basis of its origin and early phases of dispersal remain poorly documented. To track its synanthropisation and subsequent invasive spread during the develoment of complex human societies, we analyzed 829 Mus specimens from 43 archaeological contexts in Southwestern Asia and Southeastern Europe, between 40,000 and 3,000 cal. BP, combining geometric morphometrics numerical taxonomy, ancient mitochondrial DNA and direct radiocarbon dating. We found that large late hunter-gatherer sedentary settlements in the Levant, c. 14,500 cal. BP, promoted the commensal behaviour of the house mouse, which probably led the commensal pathway to cat domestication. House mouse invasive spread was then fostered through the emergence of agriculture throughout the Near East 12,000 years ago. Stowaway transport of house mice to Cyprus can be inferred as early as 10,800 years ago. However, the house mouse invasion of Europe did not happen until the development of proto urbanism and exchange networks - 6,500 years ago in Eastern Europe and 4000 years ago in Southern Europe - which in turn may have driven the first human mediated dispersal of cats in Europe.


Asunto(s)
ADN Mitocondrial/genética , Ratones/clasificación , Mitocondrias/genética , Análisis de Secuencia de ADN/veterinaria , Animales , Arqueología , Asia Occidental , Chipre , Europa Oriental , Humanos , Especies Introducidas , Ratones/genética , Datación Radiométrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA