Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Mater ; 12(10): 938-44, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24037122

RESUMEN

Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.


Asunto(s)
Temperatura Cutánea , Termometría/instrumentación , Adulto , Epidermis/fisiología , Humanos , Masculino , Procesos Mentales/fisiología , Estimulación Física , Descanso , Factores de Tiempo
2.
Anal Chem ; 84(5): 2459-65, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22304444

RESUMEN

To understand the mechanism of bias-induced resistance switching observed in polypyrrole (PPy) based solid state junctions, in situ UV-vis absorption spectroscopy was employed to monitor oxidation states within PPy layers in solution and in PPy/metal oxide junctions. For PPy layers in acetonitrile, oxidation led primarily to cationic polaron formation, while oxidation in 0.1 M NaOH in H(2)O resulted in imine formation, caused by deprotonation of polarons. On the basis of these results in solution, spectroelectrochemistry was used to monitor bias-induced formation of polarons and imines in PPy layers incorporated into solid state carbon/PPy/Al(2)O(3)/Pt junctions. A positive bias on the carbon electrode caused PPy oxidation, with the formation of polaron and imine species strongly dependent on the surrounding environment. The spectral changes associated with polarons or imines were stable for at least several hours after the applied bias, while a negative bias reversed the absorbance changes back to the initial PPy spectrum. These results indicate that PPy can be oxidized in nominally solid state devices, and the formation of stable polarons is dependent on the tendency for deprotonation of the polaron to the imine. Since PPy conductivity depends strongly on the polaron concentration, monitoring its concentration is critical to determining resistance switching mechanisms. Furthermore, the importance of ion mobility and OH(-) generation through H(2)O reduction at the Pt contact are discussed.

3.
Nanotechnology ; 23(34): 344004, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22885907

RESUMEN

We describe the use of semiconductor nanomaterials, advanced fabrication methods and unusual device designs for a class of electronics capable of integration onto the inner and outer surfaces of thin, elastomeric sheets in closed-tube geometries, specially formed for mounting on the fingertips. Multifunctional systems of this type allow electrotactile stimulation with electrode arrays multiplexed using silicon nanomembrane (Si NM) diodes, high-sensitivity strain monitoring with Si NM gauges, and tactile sensing with elastomeric capacitors. Analytical calculations and finite element modeling of the mechanics quantitatively capture the key behaviors during fabrication/assembly, mounting and use. The results provide design guidelines that highlight the importance of the NM geometry in achieving the required mechanical properties. This type of technology could be used in applications ranging from human-machine interfaces to 'instrumented' surgical gloves and many others.

4.
Nano Lett ; 11(11): 4725-9, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21995487

RESUMEN

Diffusion of metal atoms onto a molecular monolayer attached to a conducting surface permits electronic contact to the molecules with minimal heat transfer or structural disturbance. Surface-mediated metal deposition (SDMD) involves contact between "cold" diffusing metal atoms and molecules, due to shielding of the molecules from direct exposure to metal vapor. Measurement of the current through the molecular layer during metal diffusion permits observation of molecular conductance for junctions containing as few as one molecule. Discrete conductance steps were observed for 1-10 molecules within a monolayer during a single deposition run, corresponding to "recruitment" of additional molecules as the contact area between the diffusing Au layer and molecules increases. For alkane monolayers, the molecular conductance measured with SDMD exhibited an exponential dependence on molecular length with a decay constant (ß) of 0.90 per CH(2) group, comparable to that observed by other techniques. Molecular conductance values were determined for three azobenzene molecules, and correlated with the offset between the molecular HOMO and the contact Fermi level, as expected for hole-mediated tunneling. Current-voltage curves were obtained during metal deposition showed no change in shape for junctions containing 1, 2, and 10 molecules, implying minimal intermolecular interactions as single molecule devices transitioned into several molecules devices. SDMD represents a "soft" metal deposition method capable of providing single molecule conductance values, then providing quantitative comparisons to molecular junctions containing 10(6) to 10(10) molecules.


Asunto(s)
Cristalización/métodos , Electrónica/instrumentación , Microelectrodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Miniaturización , Nanotecnología/métodos , Tamaño de la Partícula
5.
Nat Commun ; 5: 3329, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24569383

RESUMEN

Means for high-density multiparametric physiological mapping and stimulation are critically important in both basic and clinical cardiology. Current conformal electronic systems are essentially 2D sheets, which cannot cover the full epicardial surface or maintain reliable contact for chronic use without sutures or adhesives. Here we create 3D elastic membranes shaped precisely to match the epicardium of the heart via the use of 3D printing, as a platform for deformable arrays of multifunctional sensors, electronic and optoelectronic components. Such integumentary devices completely envelop the heart, in a form-fitting manner, and possess inherent elasticity, providing a mechanically stable biotic/abiotic interface during normal cardiac cycles. Component examples range from actuators for electrical, thermal and optical stimulation, to sensors for pH, temperature and mechanical strain. The semiconductor materials include silicon, gallium arsenide and gallium nitride, co-integrated with metals, metal oxides and polymers, to provide these and other operational capabilities. Ex vivo physiological experiments demonstrate various functions and methodological possibilities for cardiac research and therapy.


Asunto(s)
Algoritmos , Corazón/fisiología , Membranas Artificiales , Modelos Cardiovasculares , Pericardio/fisiología , Animales , Elastómeros/química , Electrocardiografía/instrumentación , Electrocardiografía/métodos , Electrodos , Técnicas Electrofisiológicas Cardíacas/instrumentación , Técnicas Electrofisiológicas Cardíacas/métodos , Mapeo Epicárdico/instrumentación , Mapeo Epicárdico/métodos , Corazón/anatomía & histología , Sistema de Conducción Cardíaco/fisiología , Concentración de Iones de Hidrógeno , Imagenología Tridimensional , Técnicas In Vitro , Pericardio/anatomía & histología , Conejos , Reproducibilidad de los Resultados , Semiconductores , Siliconas/química , Temperatura
6.
Adv Healthc Mater ; 3(10): 1597-607, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24668927

RESUMEN

Non-invasive, biomedical devices have the potential to provide important, quantitative data for the assessment of skin diseases and wound healing. Traditional methods either rely on qualitative visual and tactile judgments of a professional and/or data obtained using instrumentation with forms that do not readily allow intimate integration with sensitive skin near a wound site. Here, an electronic sensor platform that can softly and reversibly laminate perilesionally at wounds to provide highly accurate, quantitative data of relevance to the management of surgical wound healing is reported. Clinical studies on patients using thermal sensors and actuators in fractal layouts provide precise time-dependent mapping of temperature and thermal conductivity of the skin near the wounds. Analytical and simulation results establish the fundamentals of the sensing modalities, the mechanics of the system, and strategies for optimized design. The use of this type of "epidermal" electronics system in a realistic clinical setting with human subjects establishes a set of practical procedures in disinfection, reuse, and protocols for quantitative measurement. The results have the potential to address important unmet needs in chronic wound management.


Asunto(s)
Electrónica Médica/instrumentación , Monitoreo Fisiológico/instrumentación , Cicatrización de Heridas/fisiología , Anciano , Diseño de Equipo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Siliconas , Temperatura Cutánea/fisiología , Cinta Quirúrgica , Termografía/instrumentación
7.
J Appl Phys ; 114(16): 164511, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24273338

RESUMEN

Tactile sensors and electrotactile stimulators can provide important links between humans and virtual environments, through the sensation of touch. Soft materials, such as low modulus silicones, are attractive as platforms and support matrices for arrays sensors and actuators that laminate directly onto the fingertips. Analytic models for the mechanics of three dimensional, form-fitting finger cuffs based on such designs are presented here, along with quantitative validation using the finite element method. The results indicate that the maximum strains in the silicone and the embedded devices are inversely proportional to the square root of radius of curvature of the cuff. These and other findings can be useful in formulating designs for these and related classes of body-worn, three dimensional devices.

8.
Nat Nanotechnol ; 5(8): 612-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20581834

RESUMEN

Virtually all types of molecular electronic devices depend on electronically addressing a molecule or molecular layer through the formation of a metallic contact. The introduction of molecular devices into integrated circuits will probably depend on the formation of contacts using a vapour deposition technique, but this approach frequently results in the metal atoms penetrating or damaging the molecular layer. Here, we report a method of forming 'soft' metallic contacts on molecular layers through surface-diffusion-mediated deposition, in which the metal atoms are deposited remotely and then diffuse onto the molecular layer, thus eliminating the problems of penetration and damage. Molecular junctions fabricated by this method exhibit excellent yield (typically >90%) and reproducibility, and allow examination of the effects of molecular-layer structure, thickness and contact work function.


Asunto(s)
Galvanoplastia/métodos , Metales/química , Microelectrodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Cristalización/métodos , Difusión , Módulo de Elasticidad , Conductividad Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA