Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hell J Nucl Med ; 18 Suppl 1: 51-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26665212

RESUMEN

Chemical modification of histones represents an important epigenetic mechanism critical for DNA metabolism including, transcription, replication and repair. A well-known example is maintenance of histone acetylation status by the opposing actions of histone acetyltransferase and histone deacetylase enzymes which add and remove acetyl groups on lysine residues on histone tails, respectively. Similarly, histone methyltransferase and histone demethylase enzymes are responsible for adding and removing methyl groups on histone tails, respectively. Further, there is accumulated evidence indicating a histone code where combinations of different chemical modifications on histone tails act in concert to regulate DNA metabolic events. Although numerous compounds have been developed to specifically alter the function of chromatin modifying enzymes (for example, histone deacetylase inhibitors are relatively well-investigated), we are only at the early stages of understanding the epigenetic effects of dietary compounds. Here we used in silico molecular modeling approaches combined with known experimental affinities for controls, to identify potential chromatin modifying compounds derived from Olea Europaea. Our findings indicate that various compounds derived from Olea Europaea have the ability to bind to the active site of different chromatin modifying enzymes, with an affinity analogous or higher than that for a known positive control. Further, we initiated the process of validating targets using in vitro binding and enzyme activity inhibition assays and provide initial findings of potential epigenetic effects in a clinical context. Overall, our findings can be considered as the first instalment of a comprehensive endeavour to catalogue and detail the epigenetic effects of compounds derived from Olea Europaea.

2.
J Mol Graph Model ; 101: 107719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32898836

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used to reduce pain. These target cyclooxygenase (COX) enzymes which produce inflammatory mediators. Adverse effects associated with the use of traditional NSAIDs have led to a rise in the development of alternative therapies. Derived from Olea Europaea, olive oil is a main component of the Mediterranean diet, containing phenolic compounds that contribute to its antioxidant and anti-inflammatory properties. It has previously been found that oleocanthal, a phenolic compound derived from the olive, had similar effects to ibuprofen, a commonly used NSAID. There is an abundance of olive phenolic compounds that have yet to be investigated for their anti-inflammatory properties. In this study, it was sought to identify potential olive-derived compounds with the ability to inhibit COX enzymes, and study the mechanisms using in silico approaches. Molecular docking was employed to determine the COX inhibitory potential of an olive phenolic compound library. From docking, it was determined that 1-oleyltyrosol (1OL) and ligstroside derivative 2 (LG2) demonstrated the greatest binding affinity to both COX-1 and COX-2. Interactions with these compounds were further examined using molecular dynamics simulations. The residue contributions to binding free energy were computed using Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) methods, revealing that residues Leu93, Val116, Leu352, and Ala527 in COX-1 and COX-2 were key determinants of potential inhibition. Along with part 2 of this study, this work aims to identify and characterise novel phenolic compounds which may possess COX inhibitory properties.


Asunto(s)
Olea , Antiinflamatorios , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Aceite de Oliva
3.
J Mol Graph Model ; 101: 107743, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32920237

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to reduce pain, and function by targeting cyclooxygenase (COX) enzymes to inhibit the production of prostaglandins that facilitate inflammation. Since oleocanthal derived from Olea europaea is known to inhibit COX, we sought to characterise novel olive compounds with COX inhibitory activity using in silico techniques. Following on from part 1 of this study which identified 1-oleyltyrosol (1OL) and ligstroside derivative 2 (LG2) with COX inhibitory potential, the mechanisms of COX interactions by these selected compounds were further examined using molecular dynamics (MD) simulations. Classical MD simulations were carried out on COX-1 and COX-2 complexed with 1OL and LG2 to determine the stability and protein backbone fluctuation. Protein dynamics were examined using essential dynamics methods and network analysis, which identified that the N-terminal epidermal growth factor-like domain and membrane bound domains of COX-1 and -2 exhibited altered motions when ligands were bound. Distinct dynamical modules were identified, and that COX-2 inter-residue communications were more sensitive to ligand binding compared to COX-1. The use of various network metrics presents a novel approach in the characterisation of network behaviour of different ligands. It is proposed that inter-residue network metrics provide additional measures of the potential bioactivity of ligands, which may form a useful adjunct to conventional direct predictions of binding affinity, in determining the efficacy of potential small-molecule inhibitors. Overall, this two-part study characterises anti-inflammatory effects of low dosage dietary COX inhibitors, and provides a possible avenue for the development of therapeutics in inflammatory diseases.


Asunto(s)
Olea , Antiinflamatorios no Esteroideos , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2/farmacología , Ligandos
4.
Database (Oxford) ; 20182018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688352

RESUMEN

Accumulated epidemiological, clinical and experimental evidence has indicated the beneficial health effects of the Mediterranean diet, which is typified by the consumption of virgin olive oil (VOO) as a main source of dietary fat. At the cellular level, compounds derived from various olive (Olea europaea), matrices, have demonstrated potent antioxidant and anti-inflammatory effects, which are thought to account, at least in part, for their biological effects. Research efforts are expanding into the characterization of compounds derived from Olea europaea, however, the considerable diversity and complexity of the vast array of chemical compounds have made their precise identification and quantification challenging. As such, only a relatively small subset of olive-derived compounds has been explored for their biological activity and potential health effects to date. Although there is adequate information describing the identification or isolation of olive-derived compounds, these are not easily searchable, especially when attempting to acquire chemical or biological properties. Therefore, we have created the OliveNet™ database containing a comprehensive catalogue of compounds identified from matrices of the olive, including the fruit, leaf and VOO, as well as in the wastewater and pomace accrued during oil production. From a total of 752 compounds, chemical analysis was sufficient for 676 individual compounds, which have been included in the database. The database is curated and comprehensively referenced containing information for the 676 compounds, which are divided into 13 main classes and 47 subclasses. Importantly, with respect to current research trends, the database includes 222 olive phenolics, which are divided into 13 subclasses. To our knowledge, OliveNet™ is currently the only curated open access database with a comprehensive collection of compounds associated with Olea europaea.Database URL: https://www.mccordresearch.com.au.


Asunto(s)
Bases de Datos Factuales , Olea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA