Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 23(18): 4887-905, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24794857

RESUMEN

Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patients.


Asunto(s)
Redes Reguladoras de Genes , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas RGS/metabolismo , Animales , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuronas/metabolismo , Proteínas Oncogénicas/metabolismo , Enfermedad de Parkinson/sangre , Proteína Desglicasa DJ-1 , Proteínas Quinasas/metabolismo , Biología de Sistemas/métodos , Transcriptoma
2.
J Neurosci ; 34(12): 4167-74, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24647938

RESUMEN

Trans-activating response region (TAR) DNA-binding protein of 43 kDa (TDP-43) is an RNA-binding protein that is mutated in familial amyotrophic lateral sclerosis (ALS). Disease-linked mutations in TDP-43 increase the tendency of TDP-43 to aggregate, leading to a corresponding increase in formation of stress granules, cytoplasmic protein/RNA complexes that form in response to stress. Although the field has focused on stress granules, TDP-43 also forms other types of RNA granules. For example, TDP-43 is associated with RNA granules that are prevalent throughout the dendritic arbor in neurons. Because aggregation of TDP-43 is also important for the formation of these neuronal RNA granules, we hypothesized that disease-linked mutations might alter granule formation even in the absence of stress. We now report that ALS-linked mutations in TDP-43 (A315T and Q343R) increase the size of neuronal TDP-43 granules in the dendritic arbor of rat hippocampal neurons. The mutations correspondingly reduce the granule density, movement, and mobility of TDP-43 granules. Depolarization of rat hippocampal neurons with KCl stimulates TDP-43 granule migration into dendrites, but A315T and Q343R TDP-43 granules migrate shorter distances and into fewer dendrites than wild-type TDP-43. These findings highlight novel elements of TDP-43 biology that are affected by disease-linked mutations and suggest a neuronally selective mechanism through which TDP-43 mutations might elicit neuronal dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Gránulos Citoplasmáticos/genética , Proteínas de Unión al ADN/genética , Dendritas/genética , Neuronas/metabolismo , ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Transporte Biológico , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/metabolismo , Dendritas/metabolismo , Hipocampo/metabolismo , Mutación , ARN/metabolismo , Ratas , Ratas Sprague-Dawley
3.
J Pharmacol Exp Ther ; 332(3): 959-69, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19996296

RESUMEN

Muscarinic cholinergic receptors modulate dopaminergic function in brain pathways thought to mediate cocaine's abuse-related effects. Here, we sought to confirm and extend in the mouse species findings that nonselective muscarinic receptor antagonists can enhance cocaine's discriminative stimulus. More importantly, we tested the hypothesis that muscarinic receptor agonists with varied receptor subtype selectivity can blunt cocaine's discriminative stimulus and reinforcing effects; we hypothesized a critical role for the M(1) and/or M(4) receptor subtypes in this modulation. Mice were trained to discriminate cocaine from saline, or to self-administer intravenous cocaine chronically. The nonselective muscarinic antagonists scopolamine and methylscopolamine, the nonselective muscarinic agonists oxotremorine and pilocarpine, the M(1)/M(4)-preferring agonist xanomeline, the putative M(1)-selective agonist (4-hydroxy-2-butynyl)-1-trimethylammonium-3-chlorocarbanilate chloride (McN-A-343), and the novel M(1)-selective agonist 1-(1-2-methylbenzyl)-1,4-bipiperidin-4-yl)-1H benzo[d]imidazol-2(3H)-one (TBPB) were tested as substitution and/or pretreatment to cocaine. Both muscarinic antagonists partially substituted for cocaine and enhanced its discriminative stimulus. Conversely, muscarinic agonists blunted cocaine discrimination and abolished cocaine self-administration with varying effects on food-maintained behavior. Specifically, increasing selectivity for the M(1) subtype (oxotremorine < xanomeline < TBPB) conferred lesser nonspecific rate-suppressing effects, with no rate suppression for TBPB. In mutant mice lacking M(1) and M(4) receptors, xanomeline failed to diminish cocaine discrimination while rate-decreasing effects were intact. Our data suggest that central M(1) receptor activation attenuates cocaine's abuse-related effects, whereas non-M(1)/M(4) receptors probably contribute to undesirable effects of muscarinic stimulation. These data provide the first demonstration of anticocaine effects of systemically applied, M(1) receptor agonists and suggest the possibility of a new approach to pharmacotherapy for cocaine addiction.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Trastornos Relacionados con Cocaína/psicología , Cocaína/farmacología , Discriminación en Psicología , Receptor Muscarínico M1/agonistas , Refuerzo en Psicología , Regulación Alostérica , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cocaína/administración & dosificación , Trastornos Relacionados con Cocaína/metabolismo , Condicionamiento Operante , Antagonistas de Dopamina/farmacología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M1/genética , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/antagonistas & inhibidores , Receptor Muscarínico M4/genética , Autoadministración
4.
Front Mol Neurosci ; 7: 64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25071441

RESUMEN

LRRK2 is a protein that interacts with a plethora of signaling molecules, but the complexity of LRRK2 function presents a challenge for understanding the role of LRRK2 in the pathophysiology of Parkinson's disease (PD). Studies of LRRK2 using over-expression in transgenic mice have been disappointing, however, studies using invertebrate systems have yielded a much clearer picture, with clear effects of LRRK2 expression, knockdown or deletion in Caenorhabditis elegans and Drosophila on modulation of survival of dopaminergic neurons. Recent studies have begun to focus attention on particular signaling cascades that are a target of LRRK2 function. LRRK2 interacts with members of the mitogen activated protein kinase (MAPK) pathway and might regulate the pathway action by acting as a scaffold that directs the location of MAPK pathway activity, without strongly affecting the amount of MAPK pathway activity. Binding to GTPases, GTPase-activating proteins and GTPase exchange factors are another strong theme in LRRK2 biology, with LRRK2 binding to rac1, cdc42, rab5, rab7L1, endoA, RGS2, ArfGAP1, and ArhGEF7. All of these molecules appear to feed into a function output for LRRK2 that modulates cytoskeletal outgrowth and vesicular dynamics, including autophagy. These functions likely impact modulation of α-synuclein aggregation and associated toxicity eliciting the disease processes that we term PD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA