Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(8): e1012211, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102402

RESUMEN

The SARS-CoV-2 pandemic has generated a considerable number of infections and associated morbidity and mortality across the world. Recovery from these infections, combined with the onset of large-scale vaccination, have led to rapidly-changing population-level immunological landscapes. In turn, these complexities have highlighted a number of important unknowns related to the breadth and strength of immunity following recovery or vaccination. Using simple mathematical models, we investigate the medium-term impacts of waning immunity against severe disease on immuno-epidemiological dynamics. We find that uncertainties in the duration of severity-blocking immunity (imparted by either infection or vaccination) can lead to a large range of medium-term population-level outcomes (i.e. infection characteristics and immune landscapes). Furthermore, we show that epidemiological dynamics are sensitive to the strength and duration of underlying host immune responses; this implies that determining infection levels from hospitalizations requires accurate estimates of these immune parameters. More durable vaccines both reduce these uncertainties and alleviate the burden of SARS-CoV-2 in pessimistic outcomes. However, heterogeneity in vaccine uptake drastically changes immune landscapes toward larger fractions of individuals with waned severity-blocking immunity. In particular, if hesitancy is substantial, more robust vaccines have almost no effects on population-level immuno-epidemiology, even if vaccination rates are compensatorily high among vaccine-adopters. This pessimistic scenario for vaccination heterogeneity arises because those few individuals that are vaccine-adopters are so readily re-vaccinated that the duration of vaccinal immunity has no appreciable consequences on their immune status. Furthermore, we find that this effect is heightened if vaccine-hesitants have increased transmissibility (e.g. due to riskier behavior). Overall, our results illustrate the necessity to characterize both transmission-blocking and severity-blocking immune time scales. Our findings also underline the importance of developing robust next-generation vaccines with equitable mass vaccine deployment.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/epidemiología , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacilación a la Vacunación/estadística & datos numéricos , Índice de Severidad de la Enfermedad , Vacunación/estadística & datos numéricos , Pandemias/prevención & control , Biología Computacional
2.
J Theor Biol ; 582: 111741, 2024 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-38280543

RESUMEN

Evolutionary theory has typically focused on pairwise interactions, such as those between hosts and parasites, with relatively little work having been carried out on more complex interactions including hyperparasites: parasites of parasites. Hyperparasites are common in nature, with the chestnut blight fungus virus CHV-1 a well-known natural example, but also notably include the phages of important human bacterial diseases. We build a general modeling framework for the evolution of hyperparasites that highlights the central role that the ability of a hyperparasite to be transmitted with its parasite plays in their evolution. A key result is that hyperparasites which transmit with their parasite hosts (hitchhike) will be selected for lower virulence, trending towards hypermutualism or hypercommensalism. We examine the impact on the evolution of hyperparasite systems of a wide range of host and parasite traits showing, for example, that high parasite virulence selects for higher hyperparasite virulence resulting in reductions in parasite virulence when hyperparasitized. Furthermore, we show that acute parasite infection will also select for increased hyperparasite virulence. Our results have implications for hyperparasite research, both as biocontrol agents and for their role in shaping community ecology and evolution and moreover emphasize the importance of understanding evolution in the context of multitrophic interactions.


Asunto(s)
Evolución Biológica , Parásitos , Animales , Humanos , Modelos Biológicos , Ecología , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Parásitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA