Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(15): 3936-3948.e10, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34192529

RESUMEN

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , ARN Mensajero/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos/inmunología , Unión Competitiva , Humanos , Inmunoglobulina G/metabolismo , Mutación/genética , Dominios Proteicos , Hipermutación Somática de Inmunoglobulina/genética
2.
Nat Immunol ; 24(9): 1443-1457, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563309

RESUMEN

Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.


Asunto(s)
Páncreas , Pancreatitis , Ratones , Animales , Páncreas/patología , Macrófagos , Pancreatitis/genética , Pancreatitis/patología , Fibrosis , Neoplasias Pancreáticas
3.
Nature ; 623(7986): 283-291, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938702

RESUMEN

Mitochondria are believed to have originated through an ancient endosymbiotic process in which proteobacteria were captured and co-opted for energy production and cellular metabolism. Mitochondria segregate during cell division and differentiation, with vertical inheritance of mitochondria and the mitochondrial DNA genome from parent to daughter cells. However, an emerging body of literature indicates that some cell types export their mitochondria for delivery to developmentally unrelated cell types, a process called intercellular mitochondria transfer. In this Review, we describe the mechanisms by which mitochondria are transferred between cells and discuss how intercellular mitochondria transfer regulates the physiology and function of various organ systems in health and disease. In particular, we discuss the role of mitochondria transfer in regulating cellular metabolism, cancer, the immune system, maintenance of tissue homeostasis, mitochondrial quality control, wound healing and adipose tissue function. We also highlight the potential of targeting intercellular mitochondria transfer as a therapeutic strategy to treat human diseases and augment cellular therapies.


Asunto(s)
Mitocondrias , Humanos , Tejido Adiposo/metabolismo , Transporte Biológico , Enfermedad , ADN Mitocondrial/genética , Salud , Homeostasis , Sistema Inmunológico , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Cicatrización de Heridas
4.
Nat Methods ; 21(5): 777-792, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637691

RESUMEN

Single-cell T cell and B cell antigen receptor-sequencing data analysis can potentially perform in-depth assessments of adaptive immune cells that inform on understanding immune cell development to tracking clonal expansion in disease and therapy. However, it has been extremely challenging to analyze and interpret T cells and B cells and their adaptive immune receptor repertoires at the single-cell level due to not only the complexity of the data but also the underlying biology. In this Review, we delve into the computational breakthroughs that have transformed the analysis of single-cell T cell and B cell antigen receptor-sequencing data.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Receptores de Antígenos de Linfocitos T , Análisis de la Célula Individual , Linfocitos T , Análisis de la Célula Individual/métodos , Humanos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Linfocitos T/inmunología , Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Biología Computacional/métodos
5.
Blood ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776511

RESUMEN

The interplay between T-cell states of differentiation, dysfunction, and treatment response in acute myeloid leukemia (AML) remains unclear. Here, we leveraged a multimodal approach encompassing high-dimensional flow cytometry and single-cell transcriptomics and found that early memory CD8+ T cells are associated with therapy response and exhibit a bifurcation into two distinct terminal end states. One state is enriched for markers of activation, whereas the other expresses NK-like and senescence markers. The skewed clonal differentiation trajectory towards CD8+ senescence was also a hallmark indicative of therapy resistance. We validated these findings by generating an AML CD8+ single-cell atlas integrating our data and other independent datasets. Finally, our analysis revealed that an imbalance between CD8+ early memory and senescent-like cells is linked to AML treatment refractoriness and poor survival. Our study provides crucial insights into the dynamics of CD8+ T-cell differentiation and advances our understanding of CD8+ T-cell dysfunction in AML.

6.
Eur J Immunol ; 53(11): e2350559, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37490492

RESUMEN

Cytokine production by memory T cells is a key mechanism of T cell mediated protection. However, we have limited understanding of the persistence of cytokine producing T cells during memory cell maintenance and secondary responses. We interrogated antigen-specific CD4 T cells using a mouse influenza A virus infection model. Although CD4 T cells detected using MHCII tetramers declined in lymphoid and non-lymphoid organs, we found similar numbers of cytokine+ CD4 T cells at days 9 and 30 in the lymphoid organs. CD4 T cells with the capacity to produce cytokines expressed higher levels of pro-survival molecules, CD127 and Bcl2, than non-cytokine+ cells. Transcriptomic analysis revealed a heterogeneous population of memory CD4 T cells with three clusters of cytokine+ cells. These clusters match flow cytometry data and reveal an enhanced survival signature in cells capable of producing multiple cytokines. Following re-infection, multifunctional T cells expressed low levels of the proliferation marker, Ki67, whereas cells that only produce the anti-viral cytokine, interferon-γ, were more likely to be Ki67+ . Despite this, multifunctional memory T cells formed a substantial fraction of the secondary memory pool. Together these data indicate that survival rather than proliferation may dictate which populations persist within the memory pool.


Asunto(s)
Linfocitos T CD4-Positivos , Virus de la Influenza A , Linfocitos T CD4-Positivos/metabolismo , Antígeno Ki-67 , Citocinas/metabolismo , Interferón gamma/metabolismo , Memoria Inmunológica
7.
J Immunol ; 207(5): 1229-1238, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34348975

RESUMEN

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or seasonal influenza may lead to respiratory failure requiring intubation and mechanical ventilation. The pathophysiology of this respiratory failure is attributed to local immune dysregulation, but how the immune response to viral infection in the lower airways of the human lung differs between individuals with respiratory failure and those without is not well understood. We used quantitative multiparameter flow cytometry and multiplex cytokine assays to evaluate matched blood and bronchoalveolar lavage (BAL) samples from control human subjects, subjects with symptomatic seasonal influenza who did not have respiratory failure, and subjects with severe seasonal influenza or SARS-CoV-2 infection with respiratory failure. We find that severe cases are associated with an influx of nonclassical monocytes, activated T cells, and plasmablast B cells into the lower airways. Cytokine concentrations were not elevated in the lower airways of moderate influenza patients compared with controls; however, 28 of 35 measured cytokines were significantly elevated in severe influenza, severe SARS-CoV-2 infection, or both. We noted the largest elevations in IL-6, IP-10, MCP-1, and IL-8. IL-1 family cytokines and RANTES were higher in severe influenza infection than severe SARS-CoV-2 infection. Interestingly, only the concentration of IP-10-correlated between blood and BAL during severe infection. Our results demonstrate inflammatory immune dysregulation in the lower airways during severe viral pneumonia that is distinct from lower airway responses seen in human patients with symptomatic, but not severe, illness and suggest that measurement of blood IP-10 concentration may predict this unique dysregulation.


Asunto(s)
COVID-19/inmunología , Virus de la Influenza A/fisiología , Neumonía Viral/inmunología , Sistema Respiratorio/inmunología , SARS-CoV-2/fisiología , Adulto , Anciano , Proteínas Sanguíneas/metabolismo , Líquido del Lavado Bronquioalveolar/inmunología , COVID-19/diagnóstico , Quimiocina CXCL10/metabolismo , Estudios de Cohortes , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Gripe Humana/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Respiratoria , Índice de Severidad de la Enfermedad
8.
Proc Natl Acad Sci U S A ; 117(32): 19408-19414, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32719138

RESUMEN

Untoward effector CD4+ T cell responses are kept in check by immune regulatory mechanisms mediated by CD4+ and CD8+ T cells. CD4+ T helper 17 (Th17) cells, characterized by IL-17 production, play important roles in the pathogenesis of autoimmune diseases (such as arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, among others) and in the host response to infection and cancer. Here, we demonstrate that human CD4+ T cells cells exposed to a Th17-differentiating milieu are significantly more resistant to immune suppression by CD8+ T cells compared to control Th0 cells. This resistance is mediated, in part, through the action of IL-17A, IL-17F, and IL-17AF heterodimer through their receptors (IL-17RA and IL-17RC) on CD4+ T cells themselves, but not through their action on CD8+ T cells or APC. We further show that IL-17 can directly act on non-Th17 effector CD4+ T cells to induce suppressive resistance, and this resistance can be reversed by blockade of IL-1ß, IL-6, or STAT3. These studies reveal a role for IL-17 cytokines in mediating CD4-intrinsic immune resistance. The pathways induced in this process may serve as a critical target for future investigation and immunotherapeutic intervention.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Tolerancia Inmunológica/inmunología , Interleucina-17/inmunología , Células Th17/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular , Humanos , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología
9.
Blood ; 135(2): 108-120, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31697816

RESUMEN

NF-κB and Notch signaling can be simultaneously activated in a variety of B-cell lymphomas. Patients with B-cell lymphoma occasionally develop clonally related myeloid tumors with poor prognosis. Whether concurrent activation of both pathways is sufficient to induce B-cell transformation and whether the signaling initiates B-myeloid conversion in a pathological context are largely unknown. Here, we provide genetic evidence that concurrent activation of NF-κB and Notch signaling in committed B cells is sufficient to induce B-cell lymphomatous transformation and primes common progenitor cells to convert to myeloid lineage through dedifferentiation, not transdifferentiation. Intriguingly, the converted myeloid cells can further transform, albeit at low frequency, into myeloid leukemia. Mechanistically, coactivation of NF-κB and Notch signaling endows committed B cells with the ability to self renew. Downregulation of BACH2, a lymphoma and myeloid gene suppressor, but not upregulation of CEBPα and/or downregulation of B-cell transcription factors, is an early event in both B-cell transformation and myeloid conversion. Interestingly, a DNA hypomethylating drug not only effectively eliminated the converted myeloid leukemia cells, but also restored the expression of green fluorescent protein, which had been lost in converted myeloid leukemia cells. Collectively, our results suggest that targeting NF-κB and Notch signaling will not only improve lymphoma treatment, but also prevent the lymphoma-to-myeloid tumor conversion. Importantly, DNA hypomethylating drugs might efficiently treat these converted myeloid neoplasms.


Asunto(s)
Linfocitos B/patología , Transformación Celular Neoplásica/patología , Linfoma de Células B de la Zona Marginal/patología , Células Mieloides/patología , FN-kappa B/metabolismo , Receptores Notch/metabolismo , Animales , Linfocitos B/metabolismo , Transformación Celular Neoplásica/metabolismo , Femenino , Humanos , Linfoma de Células B de la Zona Marginal/genética , Linfoma de Células B de la Zona Marginal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , FN-kappa B/genética , Receptores Notch/genética , Transducción de Señal
10.
Metabolomics ; 18(11): 84, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289122

RESUMEN

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Asunto(s)
Isoflavonas , Animales , Ratones , Isoflavonas/farmacología , Isoflavonas/metabolismo , Equol/metabolismo , Fitoestrógenos/metabolismo , Metabolismo de los Lípidos , Receptores de Estrógenos/metabolismo , Fenilalanina/metabolismo , Metabolómica , Estrógenos , Bacterias/metabolismo , Inflamación/tratamiento farmacológico , Ácidos Grasos Monoinsaturados , Esfingolípidos , Glicerofosfolípidos , Ácidos Araquidónicos
11.
Adv Exp Med Biol ; 1278: 229-256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33523451

RESUMEN

Regulatory T cells (Tregs) are critical in maintaining immune homeostasis under various pathophysiological conditions. A growing body of evidence demonstrates that Tregs play an important role in cancer progression and that they do so by suppressing cancer-directed immune responses. Tregs have been targeted for destruction by exploiting antibodies against and small-molecule inhibitors of several molecules that are highly expressed in Tregs-including immune checkpoint molecules, chemokine receptors, and metabolites. To date, these strategies have had only limited antitumor efficacy, yet they have also created significant risk of autoimmunity because most of them do not differentiate Tregs in tumors from those in normal tissues. Currently, immune checkpoint inhibitor (ICI)-based cancer immunotherapies have revolutionized cancer treatment, but the resistance to ICI is common and the elevation of Tregs is one of the most important mechanisms. Therapeutic strategies that can selectively eliminate Tregs in the tumor (i.e. therapies that do not run the risk of causing autoimmunity by affecting normal tissue), are urgently needed for the development of cancer immunotherapies. This chapter discusses specific properties of human Tregs under the context of cancer and the various ways to target Treg for cancer immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Autoinmunidad , Homeostasis , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico
12.
Adv Exp Med Biol ; 1240: 1-23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32060884

RESUMEN

Interleukin 1 (IL-1) has long been known for its pleiotropic effects on inflammation that plays a complex, and sometimes contrasting, role in different stages of cancer development. As a major proinflammatory cytokine, IL-1ß is mainly expressed by innate immune cells. IL-1α, however, is expressed by various cell types under physiological and pathological conditions. IL-1R1 is the main receptor for both ligands and is expressed by various cell types, including innate and adaptive immune cell types, epithelial cells, endothelial cells, adipocytes, chondrocytes, fibroblasts, etc. IL-1 and IL-1R1 receptor interaction leads to a set of common signaling pathways, mainly the NF-kB and MAP kinase pathways, as a result of complex positive and negative regulations. The variety of cell types with IL-1R1 expression dictates the role of IL-1 signaling at different stages of cancer, which under certain circumstances leads to contrasting roles in tumor development. Recent availability of IL-1R1 conditional knockout mouse model has made it possible to dissect the role of IL-1/IL-1R1 signaling transduction in different cell types within the tumor microenvironment. This chapter will focus on the role of IL-1/IL-1R1 in different cell types within the tumor microenvironment and discuss the potential of targeting this pathway in cancer therapy.


Asunto(s)
Interleucina-1/inmunología , Interleucina-1/metabolismo , Transducción de Señal , Microambiente Tumoral , Animales , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Interleucina-1/antagonistas & inhibidores , Ratones Noqueados , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
13.
Am J Pathol ; 188(8): 1910-1920, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29879416

RESUMEN

E-cadherin is conventionally considered to be a good prognostic marker in cancer. The loss of E-cadherin is one of the key hallmarks of epithelial-to-mesenchymal transition, a biological process that promotes cancer cell invasiveness and metastasis. Recent evidence has cast doubt on the importance of epithelial-to-mesenchymal transition in metastasis. The availability of protein-level data in the Cancer Genome Atlas allows for the quantitative analysis of protein and prognosis. The prognostic values of E-cadherin and ß-catenin were revisited across 19 cancer types, and high E-cadherin was found to correlate with good prognosis in most cancers. Conversely, higher E-cadherin and ß-catenin correlated with shorter survival in invasive breast carcinoma. Stratifying breast cancers by histologic subtype revealed that the poor prognosis of E-cadherin and ß-catenin proteins was characteristic of infiltrating ductal, but not lobular, carcinomas. To further corroborate the protein findings and examine cellular localization, immunohistochemistry was used for E-cadherin and ß-catenin in 163 breast patient samples from the Iowa cohort. Most previous studies showing that reduced or absent E-cadherin and ß-catenin was inversely associated with tumor stages in ductal carcinomas were confirmed. Taken together, these results lead us to question the prognostic values of E-cadherin and ß-catenin in ductal carcinomas and indicate a complicated role of E-cadherin and ß-catenin in breast cancer progression.


Asunto(s)
Antígenos CD/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/metabolismo , beta Catenina/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/patología , Femenino , Humanos , Pronóstico , Análisis por Matrices de Proteínas , Tasa de Supervivencia
14.
Proc Natl Acad Sci U S A ; 111(38): 13870-5, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25189770

RESUMEN

Metastatic spread is the leading cause of cancer mortality. Breast cancer (BCa) metastatic recurrence can happen years after removal of the primary tumor. Here we show that Ubc13, an E2 enzyme that catalyzes K63-linked protein polyubiquitination, is largely dispensable for primary mammary tumor growth but is required for metastatic spread and lung colonization by BCa cells. Loss of Ubc13 inhibited BCa growth and survival only at metastatic sites. Ubc13 was dispensable for transforming growth factor ß (TGFß)-induced SMAD activation but was required for activation of non-SMAD signaling via TGFß-activating kinase 1 (TAK1) and p38, whose activity controls expression of numerous metastasis promoting genes. p38 activation restored metastatic activity to Ubc13-deficient cells, and its pharmacological inhibition attenuated BCa metastasis in mice, suggesting it is a therapeutic option for metastatic BCa.


Asunto(s)
Neoplasias de la Mama/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Quinasas Quinasa Quinasa PAM/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
15.
Clin Chem ; 67(8): 1060-1061, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34352082
16.
Commun Biol ; 7(1): 481, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641668

RESUMEN

Childhood Sjögren's disease represents critically unmet medical needs due to a complete lack of immunological and molecular characterizations. This study presents key immune cell subsets and their interactions in the periphery in childhood Sjögren's disease. Here we show that single-cell RNA sequencing identifies the subsets of IFN gene-enriched monocytes, CD4+ T effector memory, and XCL1+ NK cells as potential key players in childhood Sjögren's disease, and especially in those with recurrent parotitis, which is the chief symptom prompting clinical visits from young children. A unique cluster of monocytes with type I and II IFN-related genes is identified in childhood Sjögren's disease, compared to the age-matched control. In vitro regulatory T cell functional assay demonstrates intact functionality in childhood Sjögren's disease in contrast to reduced suppression in adult Sjögren's disease. Mapping this transcriptomic landscape and interplay of immune cell subsets will expedite the understanding of childhood Sjögren's disease pathogenesis and set the foundation for precision medicine.


Asunto(s)
Síndrome de Sjögren , Adulto , Niño , Humanos , Preescolar , Síndrome de Sjögren/genética , Síndrome de Sjögren/diagnóstico , Linfocitos T Reguladores , Perfilación de la Expresión Génica , Transcriptoma , Células Asesinas Naturales
17.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38712046

RESUMEN

Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.

18.
Oncoimmunology ; 13(1): 2320411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504847

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is refractory to immune checkpoint inhibitor therapy. However, intratumoral T-cell infiltration correlates with improved overall survival (OS). Herein, we characterized the diversity and antigen specificity of the PDAC T-cell receptor (TCR) repertoire to identify novel immune-relevant biomarkers. Demographic, clinical, and TCR-beta sequencing data were collated from 353 patients across three cohorts that underwent surgical resection for PDAC. TCR diversity was calculated using Shannon Wiener index, Inverse Simpson index, and "True entropy." Patients were clustered by shared repertoire specificity. TCRs predictive of OS were identified and their associated transcriptional states were characterized by single-cell RNAseq. In multivariate Cox regression models controlling for relevant covariates, high intratumoral TCR diversity predicted OS across multiple cohorts. Conversely, in peripheral blood, high abundance of T-cells, but not high diversity, predicted OS. Clustering patients based on TCR specificity revealed a subset of TCRs that predicts OS. Interestingly, these TCR sequences were more likely to encode CD8+ effector memory and CD4+ T-regulatory (Tregs) T-cells, all with the capacity to recognize beta islet-derived autoantigens. As opposed to T-cell abundance, intratumoral TCR diversity was predictive of OS in multiple PDAC cohorts, and a subset of TCRs enriched in high-diversity patients independently correlated with OS. These findings emphasize the importance of evaluating peripheral and intratumoral TCR repertoires as distinct and relevant biomarkers in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Linfocitos T , Receptores de Antígenos de Linfocitos T/genética , Biomarcadores
19.
J Nutr ; 143(7): 1123-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23677864

RESUMEN

Diabetes is a rapidly growing epidemic affecting millions of Americans and has been implicated in a number of devastating secondary complications. We previously demonstrated that type 2 diabetic rats exhibit vitamin D deficiency due to aberrant megalin-mediated endocytosis and excessive urinary excretion of 25-hydroxycholecalciferol (25D3) and vitamin D-binding protein (DBP). Here, we examined whether a model of type 1 diabetes [T1D; streptozotocin (STZ)-treated Sprague-Dawley rats] would similarly excrete abnormally high concentrations of 25D3 and DBP due to renal damage and compromised expression of megalin and its endocytic partner, disabled-2 (Dab2). Moreover, we tested whether feeding diabetic rats starch that is resistant to digestion could alleviate these abnormalities. Control (n = 12) rats were fed a standard, semipurified diet (AIN-93G) containing 55% total dietary starch and STZ-treated rats were fed the AIN-93G diet (n = 12) or a diet containing 55% high-amylose maize that is partially resistant to digestion [20% total dietary resistant starch (RS); n = 12] for 2 and 5 wk. The RS diet attenuated weight loss and polyuria in STZ-treated rats. Histology and immunohistochemistry revealed that dietary RS also attenuated the loss of Dab2 expression in renal proximal tubules. Moreover, urinary concentrations of both 25D3 and DBP were elevated ∼10-fold in STZ-treated rats (5 wk post STZ injection), which was virtually prevented by the RS. We also observed a ∼1.5-fold increase in megalin mRNA expression in STZ-treated rats, which was attenuated by feeding rats the RS diet for 2 wk. Taken together, these studies indicate that consumption of low-glycemic carbohydrates can attenuate disruption of vitamin D homeostasis in T1D through the rescue of megalin-mediated endocytosis in the kidney.


Asunto(s)
Calcifediol/orina , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Dieta , Almidón/administración & dosificación , Proteína de Unión a Vitamina D/orina , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Amilosa/administración & dosificación , Animales , Glucemia/análisis , Glucemia/metabolismo , Carbohidratos de la Dieta/administración & dosificación , Digestión , Homeostasis/efectos de los fármacos , Inmunohistoquímica , Riñón/efectos de los fármacos , Riñón/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Estreptozocina/efectos adversos , Estreptozocina/metabolismo , Zea mays/química
20.
Bio Protoc ; 13(16): e4735, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37638293

RESUMEN

T cells are endowed with T-cell antigen receptors (TCR) that give them the capacity to recognize specific antigens and mount antigen-specific adaptive immune responses. Because TCR sequences are distinct in each naïve T cell, they serve as molecular barcodes to track T cells with clonal relatedness and shared antigen specificity through proliferation, differentiation, and migration. Single-cell RNA sequencing provides coupled information of TCR sequence and transcriptional state in individual cells, enabling T-cell clonotype-specific analyses. In this protocol, we outline a computational workflow to perform T-cell states and clonal analysis from scRNA-seq data based on the R packages Seurat, ProjecTILs, and scRepertoire. Given a scRNA-seq T-cell dataset with TCR sequence information, cell states are automatically annotated by reference projection using the ProjecTILs method. TCR information is used to track individual clonotypes, assess their clonal expansion, proliferation rates, bias towards specific differentiation states, and the clonal overlap between T-cell subtypes. We provide fully reproducible R code to conduct these analyses and generate useful visualizations that can be adapted for the needs of the protocol user. Key features Computational analysis of paired scRNA-seq and scTCR-seq data Characterizing T-cell functional state by reference-based analysis using ProjecTILs Exploring T-cell clonal structure using scRepertoire Linking T-cell clonality to transcriptomic state to study relationships between clonal expansion and functional phenotype Graphical overview.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA