Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Genet ; 143(6): 775-795, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874808

RESUMEN

NF1 microdeletion syndrome, accounting for 5-11% of NF1 patients, is caused by a deletion in the NF1 region and it is generally characterized by a severe phenotype. Although 70% of NF1 microdeletion patients presents the same 1.4 Mb type-I deletion, some patients may show additional clinical features. Therefore, the contribution of several pathogenic mechanisms, besides haploinsufficiency of some genes within the deletion interval, is expected and needs to be defined. We investigated an altered expression of deletion flanking genes by qPCR in patients with type-1 NF1 deletion, compared to healthy donors, possibly contributing to the clinical traits of NF1 microdeletion syndrome. In addition, the 1.4-Mb deletion leads to changes in the 3D chromatin structure in the 17q11.2 region. Specifically, this deletion alters DNA-DNA interactions in the regions flanking the breakpoints, as demonstrated by our 4C-seq analysis. This alteration likely causes position effect on the expression of deletion flanking genes.Interestingly, 4C-seq analysis revealed that in microdeletion patients, an interaction was established between the RHOT1 promoter and the SLC6A4 gene, which showed increased expression. We performed NGS on putative modifier genes, and identified two "likely pathogenic" rare variants in RAS pathway, possibly contributing to incidental phenotypic features.This study provides new insights into understanding the pathogenesis of NF1 microdeletion syndrome and suggests a novel pathomechanism that contributes to the expression phenotype in addition to haploinsufficiency of genes located within the deletion.This is a pivotal approach that can be applied to unravel microdeletion syndromes, improving precision medicine, prognosis and patients' follow-up.


Asunto(s)
Deleción Cromosómica , Epigénesis Genética , Haploinsuficiencia , Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Femenino , Masculino , Neurofibromina 1/genética , Cromosomas Humanos Par 17/genética , Fenotipo , Niño , Regiones Promotoras Genéticas
2.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352756

RESUMEN

Transcriptional changes normally occur during development but also underlie differences between healthy and pathological conditions. Transcription factors or chromatin modifiers are involved in orchestrating gene activity, such as the cohesin genes and their regulator NIPBL. In our previous studies, using a zebrafish model for nipblb knockdown, we described the effect of nipblb loss-of-function in specific contexts, such as central nervous system development and hematopoiesis. However, the genome-wide transcriptional impact of nipblb loss-of-function in zebrafish embryos at diverse developmental stages remains under investigation. By RNA-seq analyses in zebrafish embryos at 24 h post-fertilization, we examined genome-wide effects of nipblb knockdown on transcriptional programs. Differential gene expression analysis revealed that nipblb loss-of-function has an impact on gene expression at 24 h post fertilization, mainly resulting in gene inactivation. A similar transcriptional effect has also been reported in other organisms, supporting the use of zebrafish as a model to understand the role of Nipbl in gene regulation during early vertebrate development. Moreover, we unraveled a connection between nipblb-dependent differential expression and gene expression patterns of hematological cell populations and AML subtypes, enforcing our previous evidence on the involvement of NIPBL-related transcriptional dysregulation in hematological malignancies.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Embrión no Mamífero/citología , Perfilación de la Expresión Génica , Genoma , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Cohesinas
3.
Gut ; 66(3): 454-463, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26681737

RESUMEN

OBJECTIVE: Patient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies. DESIGN: We undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions. RESULTS: Several unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+ and CD4+ T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+ T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo. CONCLUSIONS: These results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , ADN Complementario/análisis , Epítopos de Linfocito T/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteínas de Ciclo Celular/genética , Fosfatidilinositol 3-Quinasa Clase I , Análisis Mutacional de ADN , Epítopos de Linfocito T/inmunología , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Expresión Génica , Antígenos HLA/genética , Antígenos HLA/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Neoplásicas/inmunología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Smad4/genética , Proteína Smad4/inmunología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
4.
Hum Mol Genet ; 24(20): 5828-35, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26220970

RESUMEN

Brugada syndrome (BrS) is an inherited cardiac arrhythmic disorder that can lead to sudden death, with a prevalence of 1:5000 in Caucasian population and affecting mainly male patients in their third to fourth decade of life. BrS is inherited as an autosomal dominant trait; however, to date genetic bases have been only partially understood. Indeed most mutations are located in the SCN5A gene, encoding the alpha-subunit of the Na(+) cardiac channel, but >70% BrS patients still remain genetically undiagnosed. Although 21 other genes have been associated with BrS susceptibility, their pathogenic role is still unclear. A recent next-generation sequencing study investigated the contribution of 45 arrhythmia susceptibility genes in BrS pathogenesis, observing a significant enrichment only for SCN5A. In our study, we evaluated the distribution of putative functional variants in a wider panel of 158 genes previously associated with arrhythmic and cardiac defects in a cohort of 91 SCN5A-negative BrS patients. In addition, to identify genes significantly enriched in BrS, we performed a mutation burden test by using as control dataset European individuals selected from the 1000Genomes project. We confirmed BrS genetic heterogeneity and identified new potential BrS candidates such as DSG2 and MYH7, suggesting a possible genetic overlap between different cardiac disorders.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Adulto , Anciano , Síndrome de Brugada/metabolismo , Miosinas Cardíacas/genética , Análisis Mutacional de ADN , Desmogleína 2/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Cadenas Pesadas de Miosina/genética , Población Blanca/genética
5.
Blood ; 121(21): 4388-95, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23575445

RESUMEN

We studied mutations of MPL exon 10 in patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF), first investigating a cohort of 892 consecutive patients. MPL mutation scanning was performed on granulocyte genomic DNA by using a high-resolution melt assay, and the mutant allele burden was evaluated by using deep sequencing. Somatic mutations of MPL, all but one involving codon W515, were detected in 26/661 (4%) patients with ET, 10/187 (5%) with PMF, and 7/44 (16%) patients with post-ET myelofibrosis. Comparison of JAK2 (V617F)-mutated and MPL-mutated patients showed only minor phenotypic differences. In an extended group of 62 MPL-mutated patients, the granulocyte mutant allele burden ranged from 1% to 95% and was significantly higher in patients with PMF or post-ET myelofibrosis compared with those with ET. Patients with higher mutation burdens had evidence of acquired copy-neutral loss of heterozygosity (CN-LOH) of chromosome 1p in granulocytes, consistent with a transition from heterozygosity to homozygosity for the MPL mutation in clonal cells. A significant association was found between MPL-mutant allele burden greater than 50% and marrow fibrosis. These observations suggest that acquired CN-LOH of chromosome 1p involving the MPL location may represent a molecular mechanism of fibrotic transformation in MPL-mutated myeloproliferative neoplasms.


Asunto(s)
Cromosomas Humanos Par 1/genética , Dosificación de Gen/genética , Pérdida de Heterocigocidad/genética , Trastornos Mieloproliferativos/genética , Receptores de Trombopoyetina/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Médula Ósea/patología , Médula Ósea/fisiología , Femenino , Fibrosis , Granulocitos/patología , Granulocitos/fisiología , Humanos , Incidencia , Janus Quinasa 2/genética , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Trastornos Mieloproliferativos/mortalidad , Trastornos Mieloproliferativos/patología , Adulto Joven
6.
Clin Immunol ; 148(1): 99-109, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23685219

RESUMEN

The aim of this study was to dissect the autoantibody response in celiac disease (CD) that remains largely unknown, with the goal of identifying the disease-specific autoantigenic protein pattern or the so called epitome. Sera from CD patients were used to select immunoreactive antigens from a cDNA phage-display library. Candidate genes were identified, the corresponding proteins produced and their immunoreactivity validated with sera from CD patients and controls. Thirteen CD-specific antigens were identified and further validated by protein microarray. The specificity for 6 of these antigens was confirmed by ELISA. Furthermore we showed that this antibody response was not abolished on a gluten free diet and was not shared with other autoimmune diseases. These antigens appear to be CD specific and independent of gluten induction. The utility of this panel extends beyond its diagnostic value and it may drive the attention to new targets for unbiased screens in autoimmunity research.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Enfermedad Celíaca/inmunología , Adolescente , Adulto , Autoanticuerpos/sangre , Autoantígenos/genética , Enfermedad Celíaca/sangre , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/genética , Técnicas de Visualización de Superficie Celular , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis por Matrices de Proteínas , Curva ROC , Adulto Joven
7.
Eur J Hum Genet ; 31(8): 931-938, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37217626

RESUMEN

Spinal neurofibromatosis (SNF) is a form of neurofibromatosis type 1 (NF1) characterized by bilateral neurofibromas involving all spinal roots. The pathogenic mechanisms determining the SNF form are currently unknown. To verify the presence of genetic variants possibly related to SNF or classic NF1, we studied 106 sporadic NF1 and 75 SNF patients using an NGS panel of 286 genes encoding RAS pathway effectors and neurofibromin interactors and evaluated the expression of syndecans (SDC1, SDC2, SDC3, SDC4), the NF1 3' tertile interactors, by quantitative real-time PCR. We previously identified 75 and 106 NF1 variants in SNF and NF1 cohorts, respectively. The analysis of the distribution of pathogenic NF1 variants in the three NF1 tertiles showed a significantly higher prevalence of NF1 3' tertile mutations in SNF than in the NF1 cohort. We hypothesized a potential pathogenic significance of the 3' tertile NF1 variants in SNF. The analysis of syndecan expression on PBMCs RNAs from 16 SNF, 16 classic NF1 patients and 16 healthy controls showed that the expression levels of SDC2 and SDC3 were higher in SNF and NF1 patients than in controls; moreover, SDC2, SDC3 and SDC4 were significantly over expressed in patients mutated in the 3' tertile compared to controls. Two different mutational NF1 spectra seem to characterize SNF and classic NF1, suggesting a pathogenic role of NF1 3' tertile and its interactors, syndecans, in SNF. Our study, providing new insights on a possible role of neurofibromin C-terminal in SNF, could address effective personalized patient management and treatments.


Asunto(s)
Neurofibromatosis , Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Mutación , Sindecanos/genética , Genes de Neurofibromatosis 1
8.
Nucleic Acids Res ; 38(9): e110, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20144949

RESUMEN

We have developed a high-throughput protein expression and interaction analysis platform that combines cDNA phage display library selection and massive gene sequencing using the 454 platform. A phage display library of open reading frame (ORF) fragments was created from mRNA derived from different tissues. This was used to study the interaction network of the enzyme transglutaminase 2 (TG2), a multifunctional enzyme involved in the regulation of cell growth, differentiation and apoptosis, associated with many different pathologies. After two rounds of panning with TG2 we assayed the frequency of ORFs within the selected phage population using 454 sequencing. Ranking and analysis of more than 120,000 sequences allowed us to identify several potential interactors, which were subsequently confirmed in functional assays. Within the identified clones, three had been previously described as interacting proteins (fibronectin, SMOC1 and GSTO2), while all the others were new. When compared with standard systems, such as microtiter enzyme-linked immunosorbant assay, the method described here is dramatically faster and yields far more information about the interaction under study, allowing better characterization of complex systems. For example, in the case of fibronectin, it was possible to identify the specific domains involved in the interaction.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Análisis de Secuencia de ADN/métodos , ADN Complementario/química , Proteínas de Unión al GTP/metabolismo , Humanos , Sistemas de Lectura Abierta , Biblioteca de Péptidos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Dominios y Motivos de Interacción de Proteínas , Transglutaminasas/metabolismo
9.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36612057

RESUMEN

Spinal neurofibromatosis (SNF), a phenotypic subclass of neurofibromatosis 1 (NF1), is characterized by bilateral neurofibromas involving all spinal roots. In order to deepen the understanding of SNF's clinical and genetic features, we identified 81 patients with SNF, 55 from unrelated families, and 26 belonging to 19 families with at least 1 member affected by SNF, and 106 NF1 patients aged >30 years without spinal tumors. A comprehensive NF1 mutation screening was performed using NGS panels, including NF1 and several RAS pathway genes. The main features of the SNF subjects were a higher number of internal neurofibromas (p < 0.001), nerve root swelling (p < 0.001), and subcutaneous neurofibromas (p = 0.03), while hyperpigmentation signs were significantly less frequent compared with the classical NF1-affected cohorts (p = 0.012). Fifteen patients underwent neurosurgical intervention. The histological findings revealed neurofibromas in 13 patients and ganglioneuromas in 2 patients. Phenotypic variability within SNF families was observed. The proportion of missense mutations was higher in the SNF cases than in the classical NF1 group (21.40% vs. 7.5%, p = 0.007), conferring an odds ratio (OR) of 3.34 (CI = 1.33−10.78). Two unrelated familial SNF cases harbored in trans double NF1 mutations that seemed to have a subclinical worsening effect on the clinical phenotype. Our study, with the largest series of SNF patients reported to date, better defines the clinical and genetic features of SNF, which could improve the management and genetic counseling of NF1.

10.
J Neurol ; 269(8): 4510-4522, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35545683

RESUMEN

BACKGROUND: Over 200 genetic loci have been associated with multiple sclerosis (MS) explaining ~ 50% of its heritability, suggesting that additional mechanisms may account for the "missing heritability" phenomenon. OBJECTIVE: To analyze a large cohort of Italian individuals to identify markers associated with MS with potential functional impact in the disease. METHODS: We studied 2571 MS and 3234 healthy controls (HC) of continental Italian origin. Discovery phase included a genome wide association study (1727 MS, 2258 HC), with SNPs selected according to their association in the Italian cohort only or in a meta-analysis of signals with a cohort of European ancestry (4088 MS, 7144 HC). Top associated loci were then tested in two Italian cohorts through array-based genotyping (903 MS, 884 HC) and pool-based target sequencing (588 MS, 408 HC). Finally, functional prioritization through conditional eQTL and mQTL has been performed. RESULTS: Top associated signals overlap with already known MS loci on chromosomes 3 and 17. Three SNPs (rs4267364, rs8070463, rs67919208), all involved in the regulation of TBKBP1, were prioritized to be functionally relevant. CONCLUSIONS: No evidence of novel signal of association with MS specific for the Italian continental population has been found; nevertheless, two MS loci seems to play a relevant role, raising the interest to further investigations for TBKBP1 gene.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Estudio de Asociación del Genoma Completo , Esclerosis Múltiple , Predisposición Genética a la Enfermedad/genética , Genómica , Genotipo , Humanos , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple/genética
11.
Haematologica ; 96(4): 607-11, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21228032

RESUMEN

Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.


Asunto(s)
Exones/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación/genética , Trastornos Mieloproliferativos/genética , Receptores de Trombopoyetina/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Femenino , Humanos , Janus Quinasa 2/genética , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN
12.
J Neurosci Methods ; 347: 108960, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32987100

RESUMEN

BACKGROUND: The application of single-cell RNA sequencing (scRNASeq) represents a unique approach to identify hundreds to millions of cells in mammalian cortical multilayers at different stages of embryogenesis. ScRNASeq technology applied to neurological studies requires the use of fresh starting materials because standard cryopreservation methods do not guarantee high viability of cortical primary cells derived from dissected brain areas. NEW METHOD: Here we set up and validate an innovative strategy to perform scRNASeq studies in cryopreserved primary cortical cells isolated from E15.5 mouse embryo. In order to freeze cortical primary cells, we have employed Neurostore, a medium able to guarantee high viability and cell composition of embryonic cortex after thawing. COMPARISON WITH EXISTING METHODS: We showed for the first time the possibility to run scRNASeq experiments on primary cortical cells in an off-line set-up, ensuring cellular integrity and diversity. RESULTS: By trypan blue assay and flow cytometry analysis, we found that Neurostore-cryopreserved cortical cells showed approximately 95 % of viability. Satisfactory RNA recovery and cDNA libraries were achieved. Transcriptome sequencing of 35,763 cryoconserved single cells yielded a robust data-set, identifying 25 cell clusters in three biological samples. Prevalence of peculiar neural populations before and after the cryopreservation-resuscitation procedure was verified by marker gene expression and immunofluorescence analysis. CONCLUSIONS: Our findings support the evidence that frozen primary cortical cells can be successfully employed in scRNASeq experiments allowing an unprecedented flexibility in experimental procedures, such as sample preparation and subsequent processing steps performed in different locations.


Asunto(s)
Criopreservación , Análisis de la Célula Individual , Animales , Secuencia de Bases , Citometría de Flujo , Ratones , Análisis de Secuencia de ARN
13.
Front Genet ; 12: 800262, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047017

RESUMEN

Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10-4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases.

14.
J Genet Genomics ; 48(6): 497-507, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34353742

RESUMEN

Among multiple sclerosis (MS) susceptibility genes, the strongest non-human leukocyte antigen (HLA) signal in the Italian population maps to the TNFSF14 gene encoding LIGHT, a glycoprotein involved in dendritic cell (DC) maturation. Through fine-mapping in a large Italian dataset (4,198 patients with MS and 3,903 controls), we show that the TNFSF14 intronic SNP rs1077667 is the primarily MS-associated variant in the region. Expression quantitative trait locus (eQTL) analysis indicates that the MS risk allele is significantly associated with reduced TNFSF14 messenger RNA levels in blood cells, which is consistent with the allelic imbalance in RNA-Seq reads (P < 0.0001). The MS risk allele is associated with reduced levels of TNFSF14 gene expression (P < 0.01) in blood cells from 84 Italian patients with MS and 80 healthy controls (HCs). Interestingly, patients with MS are lower expressors of TNFSF14 compared to HC (P < 0.007). Individuals homozygous for the MS risk allele display an increased percentage of LIGHT-positive peripheral blood myeloid DCs (CD11c+, P = 0.035) in 37 HCs, as well as in in vitro monocyte-derived DCs from 22 HCs (P = 0.04). Our findings suggest that the intronic variant rs1077667 alters the expression of TNFSF14 in immune cells, which may play a role in MS pathogenesis.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Esclerosis Múltiple/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Alelos , Femenino , Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Intrones/genética , Italia , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
15.
Anal Biochem ; 406(2): 176-84, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20670611

RESUMEN

The X-linked dystrophin gene is well known for its involvement in Duchenne/Becker muscular dystrophies and for its exceptional megabase size. This locus at Xp21 is prone to frequent random molecular changes, including large deletions and duplications, but also smaller variations. To cope with such huge sequence analysis requirements in forthcoming diagnostic applications, we employed the power of the parallel 454 GS-FLX pyrosequencer to the dystrophin locus. We enriched the genomic region of interest by the robust amplification of 62 fragments under universal conditions by the long-PCR protocol yielding 244,707 bp of sequence. Pooled PCR products were fragmented and used for library preparation and DNA sequencing. To evaluate the entire procedure we analyzed four male DNA samples for sequence coverage and accuracy in DNA sequence variation and for any potential bias. We identified 562 known variations and 55 additional variants not yet reported, among which we detected a causative Arg1844Stop mutation in one sample. Sanger sequencing confirmed all changes. Unexpectedly, only 3 x coverage was sufficient for 99.9993% accuracy. Our results show that long PCR combined to massive pyrosequencing is very reliable for the analysis of the biggest gene of the human genome and open the doors to other demanding applications in molecular diagnostics.


Asunto(s)
Distrofina/genética , Sitios Genéticos/genética , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Temperatura , Secuencia de Bases , Biopolímeros/genética , Humanos , Masculino , Mutación/genética , Reproducibilidad de los Resultados
16.
Sci Rep ; 10(1): 5517, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251337

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Eur J Hum Genet ; 28(10): 1432-1445, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32514133

RESUMEN

Noonan syndrome (NS) is an autosomal-dominant disorder with variable expressivity and locus heterogeneity. Despite several RAS pathway genes were implicated in NS, 20-30% of patients remain without molecular diagnosis, suggesting the involvement of further genes or multiple mechanisms. Eight patients out of 60, negative for conventional NS mutation analysis, with heterogeneous NS phenotype were investigated by means of target resequencing of 26 RAS/MAPK pathway genes. A trio was further characterized by means of whole-exome sequencing. Protein modeling and in silico prediction of protein stability allowed to identify possible pathogenic RAS pathway variants in four NS patients. A new c.355T>C variant in LZTR1 was found in patient 43. Two patients co-inherited variants in LRP1 and LZTR1 (patient 53), or LRP1 and SOS1 genes (patient 67). The forth patient (56) carried a compound heterozygote of RASAL3 gene variants and also an A2ML1 variant. While these subclinical variants are singularly present in healthy parents, they co-segregate in patients, suggesting their addictive effect and supporting a digenic inheritance, as alternative model to a more common monogenic transmission. The ERK1/2 and SAPK/JNK activation state, assessed on immortalized lymphocytes from patients 53 and 67 showed highest phosphorylation levels compared to their asymptomatic parents. These findings together with the lack of their co-occurrence in the 1000Genomes database strengthen the hypothesis of digenic inheritance in a subset of NS patients. This study suggests caution in the exclusion of subclinical variants that might play a pathogenic role providing new insights for alternative hereditary mechanisms.


Asunto(s)
Exoma , Herencia Multifactorial , Mutación , Síndrome de Noonan/genética , Fenotipo , Adulto , Anciano , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , Persona de Mediana Edad , Síndrome de Noonan/patología , Proteína SOS1/genética , Factores de Transcripción/genética , alfa-Macroglobulinas/genética
18.
Heart Rhythm ; 17(2): 296-304, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31437535

RESUMEN

BACKGROUND: Triadin is a protein expressed in cardiac and skeletal muscle that has an essential role in the structure and functional regulation of calcium release units and excitation-contraction coupling. Mutations in the triadin gene (TRDN) have been described in different forms of human arrhythmia syndromes with early onset and severe arrhythmogenic phenotype, including triadin knockout syndrome. OBJECTIVE: The purpose of this study was to characterize the pathogenetic mechanism underlying a case of severe pediatric malignant arrhythmia associated with a defect in the TRDN gene. METHODS: We used a trio whole exome sequencing approach to identify the genetic defect in a 2-year-old boy who had been resuscitated from sudden cardiac arrest and had frequent episodes of ventricular fibrillation and a family history positive for sudden death. We then performed in vitro functional analysis to investigate possible pathogenic mechanisms underlying this severe phenotype. RESULTS: We identified a novel homozygous missense variant (p.L56P) in the TRDN gene in the proband that was inherited from the heterozygous unaffected parents. Expression of a green fluorescent protein (GFP)-tagged mutant human cardiac triadin isoform (TRISK32-L56P-GFP) in heterologous systems revealed that the mutation alters protein dynamics. Furthermore, when co-expressed with the type 2 ryanodine receptor, caffeine-induced calcium release from TRISK32-L56P-GFP was relatively lower compared to that observed with the wild-type construct. CONCLUSION: The results of this study allowed us to hypothesize a pathogenic mechanism underlying this rare arrhythmogenic recessive form, suggesting that the mutant protein potentially can trigger arrhythmias by altering calcium homeostasis.


Asunto(s)
Proteínas Portadoras/genética , ADN/genética , Proteínas Musculares/genética , Mutación , Taquicardia Ventricular/genética , Proteínas Portadoras/metabolismo , Preescolar , Análisis Mutacional de ADN , Homocigoto , Humanos , Masculino , Proteínas Musculares/metabolismo , Linaje , Índice de Severidad de la Enfermedad , Taquicardia Ventricular/metabolismo
19.
BMC Genomics ; 9: 464, 2008 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-18842124

RESUMEN

BACKGROUND: A new priority in genome research is large-scale resequencing of genes to understand the molecular basis of hereditary disease and cancer. We assessed the ability of massively parallel pyrosequencing to identify sequence variants in pools. From a large collection of human PCR samples we selected 343 PCR products belonging to 16 disease genes and including a large spectrum of sequence variations previously identified by Sanger sequencing. The sequence variants included SNPs and small deletions and insertions (up to 44 bp), in homozygous or heterozygous state. RESULTS: The DNA was combined in 4 pools containing from 27 to 164 amplicons and from 8,9 to 50,8 Kb to sequence for a total of 110 Kb. Pyrosequencing generated over 80 million base pairs of data. Blind searching for sequence variations with a specifically designed bioinformatics procedure identified 465 putative sequence variants, including 412 true variants, 53 false positives (in or adjacent to homopolymeric tracts), no false negatives. All known variants in positions covered with at least 30x depth were correctly recognized. CONCLUSION: Massively parallel pyrosequencing may be used to simplify and speed the search for DNA variations in PCR products. Our results encourage further studies to evaluate molecular diagnostics applications.


Asunto(s)
Genómica/métodos , Análisis de Secuencia de ADN/métodos , Enfermedades Genéticas Congénitas/genética , Variación Genética/genética , Humanos , Mutación/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética
20.
Antimicrob Agents Chemother ; 52(7): 2616-25, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18411315

RESUMEN

The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA)(-)(58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes of A. baumannii ATCC 17978 and Acinetobacter baylyi ADP1, with the aim of identifying novel genes related to virulence and drug resistance. A. baumannii ACICU has a single chromosome of 3,904,116 bp (which is predicted to contain 3,758 genes) and two plasmids, pACICU1 and pACICU2, of 28,279 and 64,366 bp, respectively. Genome comparison showed 86.4% synteny with A. baumannii ATCC 17978 and 14.8% synteny with A. baylyi ADP1. A conspicuous number of transporters belonging to different superfamilies was predicted for A. baumannii ACICU. The relative number of transporters was much higher in ACICU than in ATCC 17978 and ADP1 (76.2, 57.2, and 62.5 transporters per Mb of genome, respectively). An antibiotic resistance island, AbaR2, was identified in ACICU and had plausibly evolved by reductive evolution from the AbaR1 island previously described in multiresistant strain A. baumannii AYE. Moreover, 36 putative alien islands (pAs) were detected in the ACICU genome; 24 of these had previously been described in the ATCC 17978 genome, 4 are proposed here for the first time and are present in both ATCC 17978 and ACICU, and 8 are unique to the ACICU genome. Fifteen of the pAs in the ACICU genome encode genes related to drug resistance, including membrane transporters and ex novo acquired resistance genes. These findings provide novel insight into the genetic basis of A. baumannii resistance.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Acinetobacter/genética , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/patogenicidad , Proteínas Bacterianas/genética , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , ADN Bacteriano/genética , Brotes de Enfermedades , Europa (Continente)/epidemiología , Humanos , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Plásmidos/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA