Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31150625

RESUMEN

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Asunto(s)
Trastorno del Espectro Autista/microbiología , Síntomas Conductuales/microbiología , Microbioma Gastrointestinal/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Bacterias , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Microbiota , Factores de Riesgo
2.
Cell ; 160(4): 583-594, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25640238

RESUMEN

Within each bacterial species, different strains may vary in the set of genes they encode or in the copy number of these genes. Yet, taxonomic characterization of the human microbiota is often limited to the species level or to previously sequenced strains, and accordingly, the prevalence of intra-species variation, its functional role, and its relation to host health remain unclear. Here, we present a comprehensive large-scale analysis of intra-species copy-number variation in the gut microbiome, introducing a rigorous computational pipeline for detecting such variation directly from shotgun metagenomic data. We uncover a large set of variable genes in numerous species and demonstrate that this variation has significant functional and clinically relevant implications. We additionally infer intra-species compositional profiles, identifying population structure shifts and the presence of yet uncharacterized variants. Our results highlight the complex relationship between microbiome composition and functional capacity, linking metagenome-level compositional shifts to strain-level variation.


Asunto(s)
Bacteroidaceae/genética , Bacteroidetes/genética , Enterobacteriaceae/genética , Tracto Gastrointestinal/microbiología , Dosificación de Gen , Bacterias Grampositivas/genética , Microbiota , Bacteroidaceae/clasificación , Bacteroidetes/clasificación , Enterobacteriaceae/clasificación , Bacterias Grampositivas/clasificación , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Obesidad/microbiología , Análisis de Componente Principal
3.
Cell ; 150(6): 1274-86, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22959076

RESUMEN

The combinatorial cross-regulation of hundreds of sequence-specific transcription factors (TFs) defines a regulatory network that underlies cellular identity and function. Here we use genome-wide maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising connections among 475 sequence-specific TFs and to analyze the dynamics of these connections across 41 diverse cell and tissue types. We find that human TF networks are highly cell selective and are driven by cohorts of factors that include regulators with previously unrecognized roles in control of cellular identity. Moreover, we identify many widely expressed factors that impact transcriptional regulatory networks in a cell-selective manner. Strikingly, in spite of their inherent diversity, all cell-type regulatory networks independently converge on a common architecture that closely resembles the topology of living neuronal networks. Together, our results provide an extensive description of the circuitry, dynamics, and organizing principles of the human TF regulatory network.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Animales , Huella de ADN , Desoxirribonucleasa I/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Especificidad de Órganos
4.
Nat Chem Biol ; 19(8): 981-991, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36879061

RESUMEN

CRISPR-Cas9 has yielded a plethora of effectors, including targeted transcriptional activators, base editors and prime editors. Current approaches for inducibly modulating Cas9 activity lack temporal precision and require extensive screening and optimization. We describe a versatile, chemically controlled and rapidly activated single-component DNA-binding Cas9 switch, ciCas9, which we use to confer temporal control over seven Cas9 effectors, including two cytidine base editors, two adenine base editors, a dual base editor, a prime editor and a transcriptional activator. Using these temporally controlled effectors, we analyze base editing kinetics, showing that editing occurs within hours and that rapid early editing of nucleotides predicts eventual editing magnitude. We also reveal that editing at preferred nucleotides within target sites increases the frequency of bystander edits. Thus, the ciCas9 switch offers a simple, versatile approach to generating chemically controlled Cas9 effectors, informing future effector engineering and enabling precise temporal effector control for kinetic studies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Cinética , Nucleótidos , Adenina
5.
Nature ; 575(7781): 224-228, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666699

RESUMEN

The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.


Asunto(s)
Bacteroidetes , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Interacciones Microbianas , Sistemas de Secreción Tipo VI/antagonistas & inhibidores , Animales , Bacteroidetes/genética , Bacteroidetes/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Genes Bacterianos/genética , Humanos , Ratones , Interacciones Microbianas/genética , Interacciones Microbianas/inmunología , Familia de Multigenes/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/inmunología
6.
Gut ; 72(5): 918-928, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36627187

RESUMEN

OBJECTIVE: Gestational diabetes mellitus (GDM) is a condition in which women without diabetes are diagnosed with glucose intolerance during pregnancy, typically in the second or third trimester. Early diagnosis, along with a better understanding of its pathophysiology during the first trimester of pregnancy, may be effective in reducing incidence and associated short-term and long-term morbidities. DESIGN: We comprehensively profiled the gut microbiome, metabolome, inflammatory cytokines, nutrition and clinical records of 394 women during the first trimester of pregnancy, before GDM diagnosis. We then built a model that can predict GDM onset weeks before it is typically diagnosed. Further, we demonstrated the role of the microbiome in disease using faecal microbiota transplant (FMT) of first trimester samples from pregnant women across three unique cohorts. RESULTS: We found elevated levels of proinflammatory cytokines in women who later developed GDM, decreased faecal short-chain fatty acids and altered microbiome. We next confirmed that differences in GDM-associated microbial composition during the first trimester drove inflammation and insulin resistance more than 10 weeks prior to GDM diagnosis using FMT experiments. Following these observations, we used a machine learning approach to predict GDM based on first trimester clinical, microbial and inflammatory markers with high accuracy. CONCLUSION: GDM onset can be identified in the first trimester of pregnancy, earlier than currently accepted. Furthermore, the gut microbiome appears to play a role in inflammation-induced GDM pathogenesis, with interleukin-6 as a potential contributor to pathogenesis. Potential GDM markers, including microbiota, can serve as targets for early diagnostics and therapeutic intervention leading to prevention.


Asunto(s)
Diabetes Gestacional , Microbiota , Embarazo , Femenino , Humanos , Diabetes Gestacional/diagnóstico , Tercer Trimestre del Embarazo , Inflamación , Citocinas
7.
Bioinformatics ; 38(6): 1615-1623, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999748

RESUMEN

MOTIVATION: Recent technological developments have facilitated an expansion of microbiome-metabolome studies, in which samples are assayed using both genomic and metabolomic technologies to characterize the abundances of microbial taxa and metabolites. A common goal of these studies is to identify microbial species or genes that contribute to differences in metabolite levels across samples. Previous work indicated that integrating these datasets with reference knowledge on microbial metabolic capacities may enable more precise and confident inference of microbe-metabolite links. RESULTS: We present MIMOSA2, an R package and web application for model-based integrative analysis of microbiome-metabolome datasets. MIMOSA2 uses genomic and metabolic reference databases to construct a community metabolic model based on microbiome data and uses this model to predict differences in metabolite levels across samples. These predictions are compared with metabolomics data to identify putative microbiome-governed metabolites and taxonomic contributors to metabolite variation. MIMOSA2 supports various input data types and customization with user-defined metabolic pathways. We establish MIMOSA2's ability to identify ground truth microbial mechanisms in simulation datasets, compare its results with experimentally inferred mechanisms in honeybee microbiota, and demonstrate its application in two human studies of inflammatory bowel disease. Overall, MIMOSA2 combines reference databases, a validated statistical framework, and a user-friendly interface to facilitate modeling and evaluating relationships between members of the microbiota and their metabolic products. AVAILABILITY AND IMPLEMENTATION: MIMOSA2 is implemented in R under the GNU General Public License v3.0 and is freely available as a web server at http://elbo-spice.cs.tau.ac.il/shiny/MIMOSA2shiny/ and as an R package from http://www.borensteinlab.com/software_MIMOSA2.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metaboloma , Microbiota , Animales , Humanos , Metabolómica/métodos , Microbiota/genética , Programas Informáticos , Redes y Vías Metabólicas
8.
Bioinformatics ; 38(22): 5055-5063, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179077

RESUMEN

MOTIVATION: Microbiome functional data are frequently analyzed to identify associations between microbial functions (e.g. genes) and sample groups of interest. However, it is challenging to distinguish between different possible explanations for variation in community-wide functional profiles by considering functions alone. To help address this problem, we have developed POMS, a package that implements multiple phylogeny-aware frameworks to more robustly identify enriched functions. RESULTS: The key contribution is an extended balance-tree workflow that incorporates functional and taxonomic information to identify functions that are consistently enriched in sample groups across independent taxonomic lineages. Our package also includes a workflow for running phylogenetic regression. Based on simulated data we demonstrate that these approaches more accurately identify gene families that confer a selective advantage compared with commonly used tools. We also show that POMS in particular can identify enriched functions in real-world metagenomics datasets that are potential targets of strong selection on multiple members of the microbiome. AVAILABILITY AND IMPLEMENTATION: These workflows are freely available in the POMS R package at https://github.com/gavinmdouglas/POMS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microbiota , Filogenia , Microbiota/genética , Metagenómica , Programas Informáticos
9.
BMC Biol ; 20(1): 266, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36464700

RESUMEN

BACKGROUND: The relationship between the gut microbiome and diet has been the focus of numerous recent studies. Such studies aim to characterize the impact of diet on the composition of the microbiome, as well as the microbiome's ability to utilize various compounds in the diet and produce metabolites that may be beneficial for the host. Consumption of dietary fibers (DFs)-polysaccharides that cannot be broken down by the host's endogenous enzymes and are degraded primarily by members of the microbiome-is known to have a profound effect on the microbiome. Yet, a comprehensive characterization of microbiome compositional and functional shifts in response to the consumption of specific DFs is still lacking. RESULTS: Here, we introduce a computational framework, coupling metagenomic sequencing with careful annotation of polysaccharide degrading enzymes and DF structures, for inferring the metabolic ability of a given microbiome sample to utilize a broad catalog of DFs. We demonstrate that the inferred fiber degradation profile (IFDP) generated by our framework accurately reflects the dietary habits of various hosts across four independent datasets. We further demonstrate that IFDPs are more tightly linked to the host diet than commonly used taxonomic and functional microbiome-based profiles. Finally, applying our framework to a set of ~700 metagenomes that represents large human population cohorts from 9 different countries, we highlight intriguing global patterns linking DF consumption habits with microbiome capacities. CONCLUSIONS: Combined, our findings serve as a proof-of-concept for the use of DF-specific analysis for providing important complementary information for better understanding the relationship between dietary habits and the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Fibras de la Dieta , Dieta , Metagenoma
10.
BMC Microbiol ; 21(1): 247, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525965

RESUMEN

BACKGROUND: Infants with cystic fibrosis (CF) suffer from gastrointestinal (GI) complications, including pancreatic insufficiency and intestinal inflammation, which have been associated with impaired nutrition and growth. Recent evidence identified altered fecal microbiota taxonomic compositions in infants with CF relative to healthy infants that were characterized by differences in the abundances of taxa associated with GI health and nutrition. Furthermore, these taxonomic differences were more pronounced in low length infants with CF, suggesting a potential link to linear growth failure. We hypothesized that these differences would entail shifts in the microbiome's functional capacities that could contribute to inflammation and nutritional failure in infants with CF. RESULTS: To test this hypothesis, we compared fecal microbial metagenomic content between healthy infants and infants with CF, supplemented with an analysis of fecal metabolomes in infants with CF. We identified notable differences in CF fecal microbial functional capacities, including metabolic and environmental response functions, compared to healthy infants that intensified during the first year of life. A machine learning-based longitudinal metagenomic age analysis of healthy and CF fecal metagenomic functional profiles further demonstrated that these differences are characterized by a CF-associated delay in the development of these functional capacities. Moreover, we found metagenomic differences in functions related to metabolism among infants with CF that were associated with diet and antibiotic exposure, and identified several taxa as potential drivers of these functional differences. An integrated metagenomic and metabolomic analysis further revealed that abundances of several fecal GI metabolites important for nutrient absorption, including three bile acids, correlated with specific microbes in infants with CF. CONCLUSIONS: Our results highlight several metagenomic and metabolomic factors, including bile acids and other microbial metabolites, that may impact nutrition, growth, and GI health in infants with CF. These factors could serve as promising avenues for novel microbiome-based therapeutics to improve health outcomes in these infants.


Asunto(s)
Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Disbiosis/complicaciones , Heces/microbiología , Enfermedades Gastrointestinales/etiología , Metaboloma , Metagenoma , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/fisiopatología , Humanos , Lactante , Estudios Longitudinales , Metabolómica/métodos , Estudios Prospectivos
11.
J Pediatr Gastroenterol Nutr ; 73(3): 395-402, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34016873

RESUMEN

OBJECTIVES: To identify factors that increase the risk of gastrointestinal-related (GI-related) hospitalization of infants with cystic fibrosis (CF) during the first year of life. METHODS: The Baby Observational and Nutrition Study was a longitudinal, observational cohort of 231 infants diagnosed with CF by newborn screening. We performed a post-hoc assessment of the frequency and indications for GI-related admissions during the first year of life. RESULTS: Sixty-five participants had at least one admission in the first 12 months of life. High pancreatic enzyme replacement therapy (PERT) dosing (>2000 lipase units/kg per meal; hazard ratio [HR] = 14.75, P = 0.0005) and use of acid suppressive medications (HR = 4.94, P = 0.01) during the study period were positively associated with subsequent GI-related admissions. High levels of fecal calprotectin (fCP) (>200 µg/g) and higher relative abundance of fecal Klebsiella pneumoniae were also positively associated with subsequent GI-related admissions (HR = 2.64, P = 0.033 and HR = 4.49, P = 0.002, respectively). During the first 12 months of life, participants with any admission had lower weight-for-length z scores (WLZ) (P = 0.01). The impact of admission on WLZ was particularly evident in participants with a GI-related admission (P < 0.0001). CONCLUSIONS: Factors associated with a higher risk for GI-related admission during the first 12 months include high PERT dosing, exposure to acid suppressive medications, higher fCP levels, and/or relative abundance of fecal K pneumoniae early in life. Infants with CF requiring GI-related hospitalization had lower WLZ at 12 months of age than those not admitted as well as those admitted for non-GI-related indications.


Asunto(s)
Fibrosis Quística , Estudios de Cohortes , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Terapia de Reemplazo Enzimático , Hospitalización , Humanos , Lactante , Recién Nacido , Tamizaje Neonatal
12.
Proc Natl Acad Sci U S A ; 115(7): 1605-1610, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378945

RESUMEN

The mature human gut microbiota is established during the first years of life, and altered intestinal microbiomes have been associated with several human health disorders. Escherichia coli usually represents less than 1% of the human intestinal microbiome, whereas in cystic fibrosis (CF), greater than 50% relative abundance is common and correlates with intestinal inflammation and fecal fat malabsorption. Despite the proliferation of E. coli and other Proteobacteria in conditions involving chronic gastrointestinal tract inflammation, little is known about adaptation of specific characteristics associated with microbiota clonal expansion. We show that E. coli isolated from fecal samples of young children with CF has adapted to growth on glycerol, a major component of fecal fat. E. coli isolates from different CF patients demonstrate an increased growth rate in the presence of glycerol compared with E. coli from healthy controls, and unrelated CF E. coli strains have independently acquired this growth trait. Furthermore, CF and control E. coli isolates have differential gene expression when grown in minimal media with glycerol as the sole carbon source. While CF isolates display a growth-promoting transcriptional profile, control isolates engage stress and stationary-phase programs, which likely results in slower growth rates. Our results indicate that there is selection of unique characteristics within the microbiome of individuals with CF, which could contribute to individual disease outcomes.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Heces/microbiología , Microbioma Gastrointestinal/genética , Intestinos/microbiología , Estudios de Casos y Controles , Preescolar , Fibrosis Quística/genética , Fibrosis Quística/patología , Grasas de la Dieta/metabolismo , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/patología , Redes Reguladoras de Genes , Glicerol/metabolismo , Humanos , Lactante , Fosfolípidos/metabolismo , Filogenia , Estados Unidos
13.
BMC Bioinformatics ; 21(1): 471, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087062

RESUMEN

BACKGROUND: Microbial communities have become an important subject of research across multiple disciplines in recent years. These communities are often examined via shotgun metagenomic sequencing, a technology which can offer unique insights into the genomic content of a microbial community. Functional annotation of shotgun metagenomic data has become an increasingly popular method for identifying the aggregate functional capacities encoded by the community's constituent microbes. Currently available metagenomic functional annotation pipelines, however, suffer from several shortcomings, including limited pipeline customization options, lack of standard raw sequence data pre-processing, and insufficient capabilities for integration with distributed computing systems. RESULTS: Here we introduce MetaLAFFA, a functional annotation pipeline designed to take unfiltered shotgun metagenomic data as input and generate functional profiles. MetaLAFFA is implemented as a Snakemake pipeline, which enables convenient integration with distributed computing clusters, allowing users to take full advantage of available computing resources. Default pipeline settings allow new users to run MetaLAFFA according to common practices while a Python module-based configuration system provides advanced users with a flexible interface for pipeline customization. MetaLAFFA also generates summary statistics for each step in the pipeline so that users can better understand pre-processing and annotation quality. CONCLUSIONS: MetaLAFFA is a new end-to-end metagenomic functional annotation pipeline with distributed computing compatibility and flexible customization options. MetaLAFFA source code is available at https://github.com/borenstein-lab/MetaLAFFA and can be installed via Conda as described in the accompanying documentation.


Asunto(s)
Metagenómica/métodos , Programas Informáticos , Humanos , Microbiota
14.
Thorax ; 75(9): 780-790, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32631930

RESUMEN

RATIONALE: The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES: To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS: We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS: CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS: Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.


Asunto(s)
Antibacterianos/farmacología , Bacterias , Fibrosis Quística/microbiología , Microbiota/efectos de los fármacos , Esputo/microbiología , Tobramicina/farmacología , Administración por Inhalación , Adolescente , Adulto , Anciano , Antibacterianos/uso terapéutico , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/prevención & control , Niño , Fibrosis Quística/fisiopatología , Volumen Espiratorio Forzado , Humanos , Quimioterapia de Mantención , Metagenoma/efectos de los fármacos , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Factores de Tiempo , Tobramicina/uso terapéutico , Adulto Joven
15.
BMC Med ; 18(1): 281, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33081767

RESUMEN

BACKGROUND: Adjuvant chemotherapy induces weight gain, glucose intolerance, and hypertension in about a third of women. The mechanisms underlying these events have not been defined. This study assessed the association between the microbiome and weight gain in patients treated with adjuvant chemotherapy for breast and gynecological cancers. METHODS: Patients were recruited before starting adjuvant therapy. Weight and height were measured before treatment and 4-6 weeks after treatment completion. Weight gain was defined as an increase of 3% or more in body weight. A stool sample was collected before treatment, and 16S rRNA gene sequencing was performed. Data regarding oncological therapy, menopausal status, and antibiotic use was prospectively collected. Patients were excluded if they were treated by antibiotics during the study. Fecal transplant experiments from patients were conducted using Swiss Webster germ-free mice. RESULTS: Thirty-three patients were recruited; of them, 9 gained 3.5-10.6% of baseline weight. The pretreatment microbiome of women who gained weight following treatment was significantly different in diversity and taxonomy from that of control women. Fecal microbiota transplantation from pretreatment samples of patients that gained weight induced metabolic changes in germ-free mice compared to mice transplanted with pretreatment fecal samples from the control women. CONCLUSION: The microbiome composition is predictive of weight gain following adjuvant chemotherapy and induces adverse metabolic changes in germ-free mice, suggesting it contributes to adverse metabolic changes seen in patients. Confirmation of these results in a larger patient cohort is warranted.


Asunto(s)
Neoplasias de la Mama/complicaciones , Quimioterapia Adyuvante/efectos adversos , Microbioma Gastrointestinal/genética , Neoplasias de los Genitales Femeninos/complicaciones , Aumento de Peso/efectos de los fármacos , Adolescente , Adulto , Anciano , Animales , Neoplasias de la Mama/tratamiento farmacológico , Estudios de Cohortes , Femenino , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Humanos , Ratones , Persona de Mediana Edad , Adulto Joven
16.
Nature ; 515(7527): 365-70, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25409825

RESUMEN

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Asunto(s)
Secuencia Conservada/genética , Evolución Molecular , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Huella de ADN , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Ratones
18.
Genome Res ; 26(6): 826-33, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197212

RESUMEN

Evolutionary innovation must occur in the context of some genomic background, which limits available evolutionary paths. For example, protein evolution by sequence substitution is constrained by epistasis between residues. In prokaryotes, evolutionary innovation frequently happens by macrogenomic events such as horizontal gene transfer (HGT). Previous work has suggested that HGT can be influenced by ancestral genomic content, yet the extent of such gene-level constraints has not yet been systematically characterized. Here, we evaluated the evolutionary impact of such constraints in prokaryotes, using probabilistic ancestral reconstructions from 634 extant prokaryotic genomes and a novel framework for detecting evolutionary constraints on HGT events. We identified 8228 directional dependencies between genes and demonstrated that many such dependencies reflect known functional relationships, including for example, evolutionary dependencies of the photosynthetic enzyme RuBisCO. Modeling all dependencies as a network, we adapted an approach from graph theory to establish chronological precedence in the acquisition of different genomic functions. Specifically, we demonstrated that specific functions tend to be gained sequentially, suggesting that evolution in prokaryotes is governed by functional assembly patterns. Finally, we showed that these dependencies are universal rather than clade-specific and are often sufficient for predicting whether or not a given ancestral genome will acquire specific genes. Combined, our results indicate that evolutionary innovation via HGT is profoundly constrained by epistasis and historical contingency, similar to the evolution of proteins and phenotypic characters, and suggest that the emergence of specific metabolic and pathological phenotypes in prokaryotes can be predictable from current genomes.


Asunto(s)
Bacterias/genética , Evolución Molecular , Transferencia de Gen Horizontal , Biología Computacional , Genoma Bacteriano , Modelos Genéticos , Filogenia
19.
Genome Res ; 25(1): 142-54, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378250

RESUMEN

Despite considerable genetic heterogeneity underlying neurodevelopmental diseases, there is compelling evidence that many disease genes will map to a much smaller number of biological subnetworks. We developed a computational method, termed MAGI (merging affected genes into integrated networks), that simultaneously integrates protein-protein interactions and RNA-seq expression profiles during brain development to discover "modules" enriched for de novo mutations in probands. We applied this method to recent exome sequencing of 1116 patients with autism and intellectual disability, discovering two distinct modules that differ in their properties and associated phenotypes. The first module consists of 80 genes associated with Wnt, Notch, SWI/SNF, and NCOR complexes and shows the highest expression early during embryonic development (8-16 post-conception weeks [pcw]). The second module consists of 24 genes associated with synaptic function, including long-term potentiation and calcium signaling with higher levels of postnatal expression. Patients with de novo mutations in these modules are more significantly intellectually impaired and carry more severe missense mutations when compared to probands with de novo mutations outside of these modules. We used our approach to define subsets of the network associated with higher functioning autism as well as greater severity with respect to IQ. Finally, we applied MAGI independently to epilepsy and schizophrenia exome sequencing cohorts and found significant overlap as well as expansion of these modules, suggesting a core set of integrated neurodevelopmental networks common to seemingly diverse human diseases.


Asunto(s)
Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Redes Reguladoras de Genes , Algoritmos , Análisis por Conglomerados , Estudios de Cohortes , Bases de Datos Factuales , Epilepsia/diagnóstico , Epilepsia/genética , Exoma , Heterogeneidad Genética , Humanos , Mutación Missense , Fenotipo , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Análisis de Secuencia de ARN
20.
PLoS Biol ; 13(1): e1002050, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25602283

RESUMEN

The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of "van Leeuwenhoek"-like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what's next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.


Asunto(s)
Investigación Biomédica/tendencias , Microbiota , Evolución Biológica , Tracto Gastrointestinal/microbiología , Humanos , Piel/microbiología , Biología Sintética , Biología de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA