Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(4): 978-83, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755601

RESUMEN

Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Factor G de Elongación Peptídica/antagonistas & inhibidores , Biosíntesis de Proteínas/efectos de los fármacos , Viomicina/farmacología , Bacterias/metabolismo , Relación Dosis-Respuesta a Droga , Guanosina Trifosfato/química , Probabilidad , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Viomicina/metabolismo
2.
RNA ; 22(1): 10-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26527791

RESUMEN

How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec(-1), is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of ∼5 sec(-1), are discussed in the perspective of rapidly growing bacterial cells.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ribosomas/fisiología , Guanosina Trifosfato/metabolismo , Cinética , Ribosomas/metabolismo
3.
Nucleic Acids Res ; 44(7): 3264-75, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27001509

RESUMEN

The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Ribosomas/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos
4.
J Biol Chem ; 290(6): 3440-54, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25451927

RESUMEN

The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 µm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo
5.
Bioorg Med Chem ; 18(17): 6512-25, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20673728

RESUMEN

Herein, the design, synthesis and inhibitory potency of a series of novel hepatitis C virus (HCV) NS3 protease inhibitors are presented. These inhibitors are based on a 2(1H)-pyrazinone P3 scaffold in combination with either a P2 phenylglycine or a glycine, and they were evaluated on the wild type as well as on two resistant variants of the enzyme, A156T and D168V. Molecular modelling suggested that the aromatic side-chain of the P2 phenylglycine occupies the same space as the substituent in position 6 on the pyrazinone core. The versatile synthetic route applied for the pyrazinone synthesis made a switch between the two positions easily feasible, resulting in phenyl- or benzyl substituted pyrazinones and leaving glycine as the P2 residue. Of several P1-P1' residues evaluated, an aromatic P1-P1' scaffold was found superior in combination with the new P3-P2 building block. As a result, an entirely new type of achiral and rigidified inhibitors was discovered, with the best of the novel inhibitors having fourfold improved potency compared to the corresponding tripeptide lead. We consider these achiral inhibitors highly suitable as starting points for further optimization.


Asunto(s)
Antivirales/síntesis química , Hepacivirus/enzimología , Inhibidores de Proteasas/síntesis química , Pirazinas/síntesis química , Pirazinas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Diseño de Fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Unión Proteica , Pirazinas/química , Relación Estructura-Actividad
6.
Structure ; 24(12): 2092-2101, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27818103

RESUMEN

Upon encountering a stop codon on mRNA, polypeptide synthesis on the ribosome is terminated by release factors, and the ribosome complex, still bound with mRNA and P-site-bound tRNA (post-termination complex, PostTC), is split into ribosomal subunits, ready for a new round of translational initiation. Separation of post-termination ribosomes into subunits, or "ribosome recycling," is promoted by the joint action of ribosome-recycling factor (RRF) and elongation factor G (EF-G) in a guanosine triphosphate (GTP) hydrolysis-dependent manner. Here we used a mixing-spraying-based method of time-resolved cryo-electron microscopy (cryo-EM) to visualize the short-lived intermediates of the recycling process. The two complexes that contain (1) both RRF and EF-G bound to the PostTC or (2) deacylated tRNA bound to the 30S subunit are of particular interest. Our observations of the native form of these complexes demonstrate the strong potential of time-resolved cryo-EM for visualizing previously unobservable transient structures.


Asunto(s)
Escherichia coli/metabolismo , Factor G de Elongación Peptídica/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Factor G de Elongación Peptídica/química , Unión Proteica , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química
7.
J Mol Biol ; 427(9): 1835-47, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25451025

RESUMEN

Studying the kinetics of translocation of mRNA and tRNAs on the translating ribosome is technically difficult since the rate-limiting steps involve large conformational changes without covalent bond formation or disruption. Here, we have developed a unique assay system for precise estimation of the full translocation cycle time at any position in any type of open reading frame (ORF). Using a buffer system optimized for high accuracy of tRNA selection together with high concentration of elongation factor G, we obtained in vivo compatible translocation rates. We found that translocation was comparatively slow early in the ORF and faster further downstream of the initiation codon. The maximal translocation rate decreased from the in vivo compatible value of 30 s(-1) at 1 mM free Mg2+ concentration to the detrimentally low value of 1 s(-1) at 6 mM free Mg2+ concentration. Thus, high and in vivo compatible accuracy of codon translation, as well as high and in vivo compatible translocation rate, required a remarkably low Mg2+ concentration. Finally, we found that the rate of translocation deep inside an ORF was not significantly affected upon variation of the standard free energy of interaction between a 6-nt upstream Shine-Dalgarno (SD)-like sequence and the anti-SD sequence of 16S rRNA in a range of 0-6 kcal/mol. Based on these experiments, we discuss the optimal choice of Mg2+ concentration for maximal fitness of the living cell by taking its effects on the accuracy of translation, the peptide bond formation rate and the translocation rate into account.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Codón Iniciador/genética , Codón Iniciador/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA