Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 39(28): 5424-5439, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31064859

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CAMK2) is a key player in synaptic plasticity and memory formation. Mutations in Camk2a or Camk2b cause intellectual disability in humans, and severe plasticity and learning deficits in mice, indicating unique functions for each isoform. However, considering the high homology between CAMK2A and CAMK2B, it is conceivable that for critical functions, one isoform compensates for the absence of the other, and that the full functional spectrum of neuronal CAMK2 remains to be revealed.Here we show that germline as well as adult deletion of both CAMK2 isoforms in male or female mice is lethal. Moreover, Ca2+-dependent activity as well as autonomous activity of CAMK2 is essential for survival. Loss of both CAMK2 isoforms abolished LTP, whereas synaptic transmission remained intact. The double-mutants showed no gross morphological changes of the brain, and in contrast to the long-considered role for CAMK2 in the structural organization of the postsynaptic density (PSD), deletion of both CAMK2 isoforms did not affect the biochemical composition of the PSD. Together, these results reveal an essential role for CAMK2 signaling in early postnatal development as well as the mature brain, and indicate that the full spectrum of CAMK2 requirements cannot be revealed in the single mutants because of partial overlapping functions of CAMK2A and CAMK2B.SIGNIFICANCE STATEMENT CAMK2A and CAMK2B have been studied for over 30 years for their role in neuronal functioning. However, most studies were performed using single knock-out mice. Because the two isoforms show high homology with respect to structure and function, it is likely that some redundancy exists between the two isoforms, meaning that for critical functions CAMK2B compensates for the absence of CAMK2A and vice versa, leaving these functions to uncover. In this study, we generated Camk2a/Camk2b double-mutant mice, and observed that loss of CAMK2, as well as the loss of Ca2+-dependent and Ca2+-independent activity of CAMK2 is lethal. These results indicate that despite 30 years of research the full spectrum of CAMK2 functioning in neurons remains to be unraveled.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Neuronas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Femenino , Eliminación de Gen , Mutación de Línea Germinal , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Neuronas/citología , Neuronas/fisiología , Densidad Postsináptica/metabolismo
2.
Ann Neurol ; 74(4): 569-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23720219

RESUMEN

OBJECTIVE: Seizure development in tuberous sclerosis complex (TSC) correlates with the presence of specific lesions called cortical tubers. Moreover, heterozygous TSC animal models do not show gross brain pathology and are seizure-free, suggesting that such pathology is a prerequisite for the development of epilepsy. However, cells within TSC lesions show increased activity of the target of rapamycin complex 1 (TORC1) pathway, and recent studies have implicated this pathway in non-TSC-related animal models of epilepsy and neuronal excitability. These findings imply a direct role for TORC1 in epilepsy. Here, we investigate the effect of increased TORC1 signaling induced by acute biallelic deletion of Tsc1 in healthy adult mice. METHODS: Biallelic Tsc1 gene deletion was induced in adult Tsc1 heterozygous and wild-type mice. Seizures were monitored by electroencephalographic and video recordings. Molecular and cellular changes were investigated by Western blot analysis, immunohistochemistry, and electrophysiology. RESULTS: Mice developed epilepsy a few days after biallelic Tsc1 deletion. Acute gene deletion was not accompanied by any obvious histological changes, but resulted in activation of the TORC1 pathway, enhanced neuronal excitability, and a decreased threshold for protein-synthesis-dependent long-term potentiation preceding the onset of seizures. Rapamycin treatment after seizure onset reduced TORC1 activity and fully abolished the seizures. INTERPRETATION: Our data indicate a direct role for TORC1 signaling in epilepsy development, even in the absence of major brain pathology. This suggests that TORC1 is a promising target for treating seizures not only in TSC but also in other forms of epilepsy that result from increased TORC1 activation.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Regulación de la Expresión Génica/genética , Complejos Multiproteicos/metabolismo , Eliminación de Secuencia/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/genética , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electroencefalografía , Epilepsia/patología , Epilepsia/terapia , Hipocampo/patología , Inmunosupresores/uso terapéutico , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas ras/metabolismo
3.
J Neurosci ; 31(28): 10141-8, 2011 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-21752990

RESUMEN

The calcium/calmodulin-dependent kinase type II (CaMKII) holoenzyme of the forebrain predominantly consists of heteromeric complexes of the αCaMKII and ßCaMKII isoforms. Yet, in contrast to αCaMKII, the role of ßCaMKII in hippocampal synaptic plasticity and learning has not been investigated. Here, we compare two targeted Camk2b mouse mutants to study the role of ßCaMKII in hippocampal function. Using a Camk2b(-/-) mutant, in which ßCaMKII is absent, we show that both hippocampal-dependent learning and Schaffer collateral-CA1 long-term potentiation (LTP) are highly dependent upon the presence of ßCaMKII. We further show that ßCaMKII is required for proper targeting of αCaMKII to the synapse, indicating that ßCaMKII regulates the distribution of αCaMKII between the synaptic pool and the adjacent dendritic shaft. In contrast, localization of αCaMKII, hippocampal synaptic plasticity and learning were unaffected in the Camk2b(A303R) mutant, in which the calcium/calmodulin-dependent activation of ßCaMKII is prevented, while the F-actin binding and bundling property is preserved. This indicates that the calcium/calmodulin-dependent kinase activity of ßCaMKII is fully dispensable for hippocampal learning, LTP, and targeting of αCaMKII, but implies a critical role for the F-actin binding and bundling properties of ßCaMKII in synaptic function. Together, our data provide compelling support for a model of CaMKII function in which αCaMKII and ßCaMKII act in concert, but with distinct functions, to regulate hippocampal synaptic plasticity and learning.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Subunidades de Proteína/metabolismo , Sinapsis/fisiología , Animales , Hipocampo/enzimología , Ratones , Ratones Noqueados , Neuronas/enzimología , Neuronas/fisiología , Sinapsis/enzimología , Transmisión Sináptica/fisiología
4.
J Neurosci ; 31(35): 12543-53, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21880916

RESUMEN

Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.


Asunto(s)
Envejecimiento , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Trastornos por Deficiencias en la Reparación del ADN/complicaciones , Degeneración Nerviosa/etiología , Degeneración Nerviosa/genética , Factor de Transcripción Activador 3/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Caspasa 3/metabolismo , Trastornos del Conocimiento/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Estimulación Eléctrica , Endonucleasas/deficiencia , Miedo/psicología , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Plasticidad Neuronal/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Front Syst Neurosci ; 15: 617388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664653

RESUMEN

Novelty detection is a core feature of behavioral adaptation and involves cascades of neuronal responses-from initial evaluation of the stimulus to the encoding of new representations-resulting in the behavioral ability to respond to unexpected inputs. In the past decade, a new important novelty detection feature, beta2 (~20-30 Hz) oscillations, has been described in the hippocampus (HC). However, the interactions between beta2 and the hippocampal network are unknown, as well as the role-or even the presence-of beta2 in other areas involved with novelty detection. In this work, we combined multisite local field potential (LFP) recordings with novelty-related behavioral tasks in mice to describe the oscillatory dynamics associated with novelty detection in the CA1 region of the HC, parietal cortex, and mid-prefrontal cortex. We found that transient beta2 power increases were observed only during interaction with novel contexts and objects, but not with familiar contexts and objects. Also, robust theta-gamma phase-amplitude coupling was observed during the exploration of novel environments. Surprisingly, bursts of beta2 power had strong coupling with the phase of delta-range oscillations. Finally, the parietal and mid-frontal cortices had strong coherence with the HC in both theta and beta2. These results highlight the importance of beta2 oscillations in a larger hippocampal-cortical circuit, suggesting that beta2 plays a role in the mechanism for detecting and modulating behavioral adaptation to novelty.

6.
Neuron ; 93(6): 1480-1492.e6, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28334610

RESUMEN

The spatial receptive fields of neurons in medial entorhinal cortex layer II (MECII) and in the hippocampus suggest general and environment-specific maps of space, respectively. However, the relationship between these receptive fields remains unclear. We reversibly manipulated the activity of MECII neurons via chemogenetic receptors and compared the changes in downstream hippocampal place cells to those of neurons in MEC. Depolarization of MECII impaired spatial memory and elicited drastic changes in CA1 place cells in a familiar environment, similar to those seen during remapping between distinct environments, while hyperpolarization did not. In contrast, both manipulations altered the firing rate of MEC neurons without changing their firing locations. Interestingly, only depolarization caused significant changes in the relative firing rates of individual grid fields, reconfiguring the spatial input from MEC. This suggests a novel mechanism of hippocampal remapping whereby rate changes in MEC neurons lead to locational changes of hippocampal place fields.


Asunto(s)
Región CA1 Hipocampal/fisiología , Corteza Entorrinal/fisiología , Células de Red/fisiología , Células de Lugar/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Inhibición Neural/fisiología , Neuronas/fisiología , Percepción Espacial/fisiología , Memoria Espacial/fisiología
7.
Mech Ageing Dev ; 133(2-3): 59-67, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22257940

RESUMEN

Age-related loss of hearing and vision are two very common disabling conditions, but the underlying mechanisms are still poorly understood. Damage by reactive oxygen species and other reactive cellular metabolites, which in turn may damage macromolecules such as DNA, has been implicated in both processes. To investigate whether DNA damage can contribute to age-related hearing and vision loss, we investigated hearing and vision in Ercc1(δ/-) mutant mice, which are deficient in DNA repair of helix-distorting DNA lesions and interstrand DNA crosslinks. Ercc1(δ/-) mice showed a progressive, accelerated increase of hearing level thresholds over time, most likely arising from deteriorating cochlear function. Ercc1(δ/-) mutants also displayed a progressive decrease in contrast sensitivity followed by thinning of the outer nuclear layer of the eyeball. The strong parallels with normal ageing suggest that unrepaired DNA damage can induce age-related decline of the auditory and visual system.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Pérdida Auditiva/genética , Trastornos de la Visión/genética , Envejecimiento , Animales , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , Daño del ADN , Electrodos , Audición , Inmunohistoquímica/métodos , Ratones , Mutación , Emisiones Otoacústicas Espontáneas/fisiología , Movimientos Sacádicos/genética , Visión Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA