Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 557(7703): 43-49, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695866

RESUMEN

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Asunto(s)
Productos Agrícolas/clasificación , Productos Agrícolas/genética , Variación Genética , Genoma de Planta/genética , Oryza/clasificación , Oryza/genética , Asia , Evolución Molecular , Genes de Plantas/genética , Genética de Población , Genómica , Haplotipos , Mutación INDEL/genética , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética
2.
Nucleic Acids Res ; 45(D1): D1075-D1081, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899667

RESUMEN

We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath. New genotype query and display features are added for reference assemblies, SNP datasets and indels. JBrowse now displays BAM, VCF and other annotation tracks, the additional genome assemblies and an embedded VISTA genome comparison viewer. Middleware is redesigned for improved performance by using a hybrid of HDF5 and RDMS for genotype storage. Query modules for genotypes, varieties and genes are improved to handle various constraints. An integrated list manager allows the user to pass query parameters for further analysis. The SNP Annotator adds traits, ontology terms, effects and interactions to markers in a list. Web-service calls were implemented to access most data. These features enable seamless querying of SNP-Seek across various biological entities, a step toward semi-automated gene-trait association discovery. URL: http://snp-seek.irri.org.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma de Planta , Mutación INDEL , Oryza/genética , Polimorfismo de Nucleótido Simple , Motor de Búsqueda , Programas Informáticos , Alelos , Biología Computacional/métodos , Frecuencia de los Genes , Sitios Genéticos , Genómica/métodos , Genotipo , Interfaz Usuario-Computador , Navegador Web
3.
Rice (N Y) ; 10(1): 37, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28779340

RESUMEN

BACKGROUND: The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars. RESULTS: In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5' portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, -A15, -A42, -A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance. CONCLUSION: The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.

4.
PLoS One ; 10(9): e0139256, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26422147

RESUMEN

Sheath rot complex and seed discoloration in rice involve a number of pathogenic bacteria that cannot be associated with distinctive symptoms. These pathogens can easily travel on asymptomatic seeds and therefore represent a threat to rice cropping systems. Among the rice-infecting Pseudomonas, P. fuscovaginae has been associated with sheath brown rot disease in several rice growing areas around the world. The appearance of a similar Pseudomonas population, which here we named P. fuscovaginae-like, represents a perfect opportunity to understand common genomic features that can explain the infection mechanism in rice. We showed that the novel population is indeed closely related to P. fuscovaginae. A comparative genomics approach on eight rice-infecting Pseudomonas revealed heterogeneous genomes and a high number of strain-specific genes. The genomes of P. fuscovaginae-like harbor four secretion systems (Type I, II, III, and VI) and other important pathogenicity machinery that could probably facilitate rice colonization. We identified 123 core secreted proteins, most of which have strong signatures of positive selection suggesting functional adaptation. Transcript accumulation of putative pathogenicity-related genes during rice colonization revealed a concerted virulence mechanism. The study suggests that rice-infecting Pseudomonas causing sheath brown rot are intrinsically diverse and maintain a variable set of metabolic capabilities as a potential strategy to occupy a range of environments.


Asunto(s)
Genoma Bacteriano/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/genética , Pseudomonas/patogenicidad , Evolución Molecular , Interacciones Huésped-Patógeno , Oryza/metabolismo , Filogenia , Pigmentación , Pseudomonas/fisiología , Semillas/metabolismo , Semillas/microbiología , Selección Genética , Virulencia
5.
Rice (N Y) ; 8(1): 34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26606925

RESUMEN

Traditional rice varieties harbour a large store of genetic diversity with potential to accelerate rice improvement. For a long time, this diversity maintained in the International Rice Genebank has not been fully used because of a lack of genome information. The publication of the first reference genome of Nipponbare by the International Rice Genome Sequencing Project (IRGSP) marked the beginning of a systematic exploration and use of rice diversity for genetic research and breeding. Since then, the Nipponbare genome has served as the reference for the assembly of many additional genomes. The recently completed 3000 Rice Genomes Project together with the public database (SNP-Seek) provides a new genomic and data resource that enables the identification of useful accessions for breeding. Using disease resistance traits as case studies, we demonstrated the power of allele mining in the 3,000 genomes for extracting accessions from the GeneBank for targeted phenotyping. Although potentially useful landraces can now be identified, their use in breeding is often hindered by unfavourable linkages. Efficient breeding designs are much needed to transfer the useful diversity to breeding. Multi-parent Advanced Generation InterCross (MAGIC) is a breeding design to produce highly recombined populations. The MAGIC approach can be used to generate pre-breeding populations with increased genotypic diversity and reduced linkage drag. Allele mining combined with a multi-parent breeding design can help convert useful diversity into breeding-ready genetic resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA