Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 312: 114909, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35305357

RESUMEN

Floating treatment wetlands (FTWs), artificial systems constructed from buoyant mats and planted with emergent macrophytes, represent a potential retrofit to enhance the dissolved nutrient removal performance of existing retention ponds. Treatment occurs as water flows through the dense network of roots suspended in the water column, providing opportunities for pollutants to be removed via filtration, sedimentation, plant uptake, and adsorption to biofilms in the root zone. Despite several recent review articles summarizing the growing body of research on FTWs, FTW design guidance and strategies to optimize their contributions to pollutant removal from stormwater are lacking, due in part to a lack of statistical analysis on FTW performance at the field scale. A meta-analysis of eight international FTW studies was performed to investigate the influence of retention pond, catchment, and FTW design characteristics on effluent concentrations of nutrients and total suspended solids (TSS). Random forest regression, a tree-based machine learning approach, was used to model complex interactions between a suite of predictor variables to identify design strategies for both retention ponds and FTWs to enhance treatment of nutrient and sediment. Results indicate that pond design features, especially loading ratio and pond depth (which should be limited to 200:1 and 1.75 m, respectively), are most influential to effluent water quality, while the benefits of FTWs were limited to improving mitigation of phosphorus species and TSS which was primarily influenced by FTW coverage and planting density. Findings from this work inform wet retention pond and FTW design, as well as guidance on scenarios where FTW implementation is most appropriate, to improve dissolved nutrient and sediment removal in urban runoff.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Nitrógeno/análisis , Fósforo/análisis , Plantas , Estanques , Contaminantes Químicos del Agua/análisis , Calidad del Agua
2.
Water Sci Technol ; 68(7): 1657-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24135117

RESUMEN

The nitrogen (N) removal efficiency and effluent quality of two parallel stormwater retention ponds, one retrofitted with a floating treatment wetland (FTW) and one without any vegetation, was compared in a field trial. This study shows that inclusion of FTWs in stormwater retention ponds has potential to moderately improve N removal. Median FTW outlet event mean concentrations (EMCs) were lower than median inlet and control pond outlet EMCs for all species of N, except for NH(4)-N. Performance was statistically better from late spring to end autumn due to higher organic nitrogen (ON) removal and denitrification in presence of the FTW. Low dissolved oxygen (DO), higher temperature and increased organic matter (OM) and microbial activity below the FTW, likely facilitated the higher denitrification rates observed over this period. Greater sediment N accumulation in the FTW pond also contributed to its higher overall N removal. Higher OM availability in the FTW pond due to release of root exudates and supply of detritus from plant die-back may have contributed to floc formation in the water column, increasing particulate ON settlement. Enhanced ON mineralisation may also be responsible but was probably limited in summer due to the low DO induced by the FTW. Direct uptake by the plants appears to be of less importance.


Asunto(s)
Nitrógeno/química , Eliminación de Residuos Líquidos , Humedales , Biomasa , Carex (Planta)/crecimiento & desarrollo , Carex (Planta)/metabolismo , Lluvia , Estaciones del Año , Agua/química , Contaminantes Químicos del Agua
3.
Sci Total Environ ; 865: 161107, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587660

RESUMEN

In the context of climate change and global trend towards greenfield urbanisation, stormwater and transported pollutants are expected to increase, impairing receiving environments. Constructed floating wetlands (CFWs) can improve stormwater retention pond performance. However, performance data are currently largely restricted to mesocosm experiments, limiting design enhancement fit for field implementation. The present 12-month field study aims to fill part of these gaps by identifying limitations and necessary design improvements for CFWs on a large retention pond/lake. Water in a 2.6-ha lake receiving stormwater from a 45-ha urban area under development in subtropical Queensland, Australia, was recirculated during dry weather periods to minimise algal growth and the risks of blooms. Pollutant removal efficiencies of two full-scale CFWs were evaluated during storm events and dry weather periods as a function of inlet and outlet pollutant concentrations, flow and rainfall. Inlet TSS and TN concentrations in runoff during the construction phase of the development exceeded required water quality limits while TP inflow concentrations were low and often below the detection limit. Median pollutant load reduction efficiencies during storm-events were - 20 % TSS, -2 % TN and 22 % TP at CFW1 and 51 % TSS, 3 % TN and 17 % TP at CFW2, respectively. TSS and TN concentration removal efficiencies at CFW1 were low and highly variable, partly due to low inlet concentrations, high flow velocities and short hydraulic retention times (<1 day). However, CFW1 significantly reduced TSS concentrations during dry weather periods. In contrast, CFW2 significantly reduced TSS concentrations during both storm events and during inter-event periods. This study highlights treatment limitations associated to the operational conditions of CFWs at field-scale not identifiable in a mesocosm-scale study. Further research is necessary to investigate treatment performance of CFWs during the operational phase of the development with higher nutrient levels.

4.
Water Res ; 48: 430-42, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24183399

RESUMEN

A field trial comparing the fate of metals in two parallel stormwater retention ponds, one of which was retrofitted with a Floating Treatment Wetland (FTW), was carried out near Auckland, New Zealand. Results suggest that the FTW increased metal accumulation in the pond sediment especially in summer due to lower sediment Eh, more anoxic water column, neutral pH and greater source of organic matter (OM) induced by the FTW. These factors combined with higher temperature enhanced metal sorption onto OM, flocculation of particulate pollutants, metal sulphide formation and reduced OM degradation and thus limited release of metals. Unlike Zn, Cu speciation in the pond sediment was relatively unchanged under various sediment Eh conditions due to its strong binding property with sulphide and OM. Occasional moderate metal release was detected from the FTW pond sediment likely due to aerobic OM degradation at the beginning of spring and/or hydroxides reduction when sediments became reduced later in the season. No release was noticed from the conventional pond sediment likely due to biosorption and/or uptake by algae which developed in the conventional pond and settled on the bottom sediment. Direct uptake by the plants of the FTW and sorption onto root plaques are not thought to be significant removal pathways. Nevertheless roots play a major role in trapping particulate pollutants, eventually sloughing off to settle on the bottom of the pond, and provide an adequate substrate for bacterial development due to release of organic compounds which are both essential for dissolved metal sorption and metal sulphide formation.


Asunto(s)
Metales/química , Movimientos del Agua , Humedales , Biomasa , Sedimentos Geológicos/química , Microscopía Electrónica de Rastreo , Nueva Zelanda , Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA