Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20446-20452, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548393

RESUMEN

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Humanos , Modelos Químicos , Conformación Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
Biochemistry ; 57(29): 4263-4275, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29901984

RESUMEN

Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.


Asunto(s)
2-Propanol/metabolismo , Activación Enzimática/efectos de los fármacos , Escherichia coli/enzimología , Solventes/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Cristalografía por Rayos X/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Simulación de Dinámica Molecular , Conformación Proteica/efectos de los fármacos , Electricidad Estática , Tetrahidrofolato Deshidrogenasa/química , Viscosidad , Agua/metabolismo
3.
Phys Chem Chem Phys ; 18(41): 28819-28828, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27722503

RESUMEN

Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. We probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Baaq2+ is 208 ps and SO4aq2- is 5.8 ps. This work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.

4.
J Chem Phys ; 142(8): 084903, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25725753

RESUMEN

Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. The self-assembly of charged sites and counterions shows structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Overall, the slow structural decay of counterions in the strongly correlated ionomer system closely resembles transport properties of semi-flexible polymers.


Asunto(s)
Congelación , Polímeros/química , Simulación de Dinámica Molecular , Electricidad Estática
5.
RSC Adv ; 14(22): 15743-15754, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38746847

RESUMEN

It is established that the rates of solvent exchange at interfaces correlate with the rates of a number of mineral reactions, including growth, dissolution and ion sorption. To test if solvent exchange is limiting these rates, quasi-elastic neutron scattering (QENS) is used here to benchmark classical molecular dynamics (CMD) simulations of water bound to nanoparticulate calcite. Four distributions of solvent exchanges are found with residence times of 8.9 ps for water bound to calcium sites, 14 ps for that bound to carbonate sites and 16.7 and 85.1 ps for two bound waters in a shared calcium-carbonate conformation. By comparing rates and activation energies, it is found that solvent exchange limits reaction rates neither for growth nor dissolution, likely due to the necessity to form intermediate states during ion sorption. However, solvent exchange forms the ceiling for reaction rates and yields insight into more complex reaction pathways.

6.
Proteins ; 68(1): 48-56, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17444524

RESUMEN

A significant number of protein sequences in a given proteome have no obvious evolutionarily related protein in the database of solved protein structures, the PDB. Under these conditions, ab initio or template-free modeling methods are the sole means of predicting protein structure. To assess its expected performance on proteomes, the TASSER structure prediction algorithm is benchmarked in the ab initio limit on a representative set of 1129 nonhomologous sequences ranging from 40 to 200 residues that cover the PDB at 30% sequence identity and which adopt alpha, alpha + beta, and beta secondary structures. For sequences in the 40-100 (100-200) residue range, as assessed by their root mean square deviation from native, RMSD, the best of the top five ranked models of TASSER has a global fold that is significantly close to the native structure for 25% (16%) of the sequences, and with a correct identification of the structure of the protein core for 59% (36%). In the absence of a native structure, the structural similarity among the top five ranked models is a moderately reliable predictor of folding accuracy. If we classify the sequences according to their secondary structure content, then 64% (36%) of alpha, 43% (24%) of alpha + beta, and 20% (12%) of beta sequences in the 40-100 (100-200) residue range have a significant TM-score (TM-score > or = 0.4). TASSER performs best on helical proteins because there are less secondary structural elements to arrange in a helical protein than in a beta protein of equal length, since the average length of a helix is longer than that of a strand. In addition, helical proteins have shorter loops and dangling tails. If we exclude these flexible fragments, then TASSER has similar accuracy for sequences containing the same number of secondary structural elements, irrespective of whether they are helices and/or strands. Thus, it is the effective configurational entropy of the protein that dictates the average likelihood of correctly arranging the secondary structure elements.


Asunto(s)
Algoritmos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas/química , Proteómica/métodos , Bases de Datos de Proteínas , Homología Estructural de Proteína
7.
J Phys Chem B ; 121(16): 4168-4173, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28398063

RESUMEN

The calorimetric glass-transition temperature of water is 136 K, but extrapolation of thermodynamic and relaxation properties of water from ambient temperature to below its homogeneous nucleation temperature TH = 235 K predicts divergence at TS = 228 K. The "no-man's land" between the TH and glassy water crystallization temperature of 150 K, which is encountered on warming up from the vitrified state, precludes a straightforward reconciliation of the two incompatible temperature dependences of water properties, above 235 K and below 150 K. The addition of lithium chloride to water allows bypassing both TH and TS on cooling, resulting in the dynamics with no features except the calorimetric glass transition, still at 136 K. We show that lithium chloride prevents hydrogen-bonding network completion in water on cooling, as manifested, in particular, in changing microscopic diffusion mechanism of the water molecules. Thus thermodynamic and relaxation peculiarities exhibited by pure water on cooling to its glass transition, such as the existence of the TH and TS, must be associated specifically with the hydrogen-bonding network.

8.
J Phys Chem B ; 121(28): 6958-6968, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28636369

RESUMEN

Structure-property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this article, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic-hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species and the neutral monomers. The favorable hydrophobic-hydrophobic interactions and the unfavorable hydrophobic-hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.

9.
Methods Enzymol ; 412: 314-38, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17046666

RESUMEN

Understanding the toxicity of amyloidogenic protein aggregates and designing therapeutic approaches require the knowledge of their structure at atomic resolution. Although solid-state NMR, X-ray diffraction, and other experimental techniques are capable of discerning the protein fibrillar structure, determining the structures of early aggregates, called oligomers, is a challenging experimental task. Computational studies by all-atom molecular dynamics, which provides a complete description of a protein in the solvent, are typically limited to study folding of smaller protein or aggregation of a small number of short protein fragments. We review an efficient ab initio computer simulation approach to protein folding and aggregation using discrete molecular dynamics (DMD) in combination with several coarse-grained protein models and implicit solvent. This approach involves different complexity levels in both the protein model and the interparticle interactions. Starting from the simplest protein model with minimal interactions, and gradually increasing its complexity, while guided by in vitro findings, we can systematically select the key features of the protein model and interactions that drive protein folding and aggregation. Because the method used in this DMD approach does not require any knowledge of the native or any other state of the protein, it can be applied to study degenerative disorders associated with protein misfolding and aberrant protein aggregation. The choice of the coarse-grained model depends on the complexity of the protein and specific questions to be addressed, which are mostly suggested by in vitro findings. Thus, we illustrate our approach on amyloid beta-protein (Abeta) associated with Alzheimer's disease (AD). Despite the simplifications introduced in the DMD approach, the predicted Abeta conformations are in agreement with existing experimental data. The in silico findings also provide further insights into the structure and dynamics of Abeta folding and oligomer formation that are amenable to in vitro testing.


Asunto(s)
Péptidos beta-Amiloides/química , Simulación por Computador , Pliegue de Proteína , Sitios de Unión , Enlace de Hidrógeno , Técnicas In Vitro , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína
10.
J Chem Theory Comput ; 12(1): 9-17, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26616475

RESUMEN

Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulation due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. Also, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.

11.
J Mol Biol ; 318(3): 863-76, 2002 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-12054829

RESUMEN

We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result.


Asunto(s)
Dominios Homologos src , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados , Cinética , Modelos Moleculares , Pliegue de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas c-crk , Termodinámica
12.
Proteins ; 53(2): 220-8, 2003 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-14517973

RESUMEN

The aggregation of alpha-helix-rich proteins into beta-sheet-rich amyloid fibrils is associated with fatal diseases, such as Alzheimer's disease and prion disease. During an aggregation process, protein secondary structure elements-alpha-helices-undergo conformational changes to beta-sheets. The fact that proteins with different sequences and structures undergo a similar transition on aggregation suggests that the sequence nonspecific hydrogen bond interaction among protein backbones is an important factor. We perform molecular dynamics simulations of a polyalanine model, which is an alpha-helix in its native state and observe a metastable beta-hairpin intermediate. Although a beta-hairpin has larger potential energy than an alpha-helix, the entropy of a beta-hairpin is larger because of fewer constraints imposed by the hydrogen bonds. In the vicinity of the transition temperature, we observe the interconversion of the alpha-helix and beta-sheet states via a random coil state. We also study the effect of the environment by varying the relative strength of side-chain interactions for a designed peptide-an alpha-helix in its native state. For a certain range of side-chain interaction strengths, we find that the intermediate beta-hairpin state is destabilized and even disappears, suggesting an important role of the environment in the aggregation propensity of a peptide.


Asunto(s)
Estructura Secundaria de Proteína , Secuencia de Aminoácidos , Simulación por Computador , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Péptidos/química
13.
J Phys Chem B ; 115(28): 8925-36, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21608980

RESUMEN

Proteins are dynamic objects, constantly undergoing conformational fluctuations, yet the linkage between internal protein motion and function is widely debated. This study reports on the characterization of temperature-activated collective and individual atomic motions of oxidized rubredoxin, a small 53 residue protein from thermophilic Pyrococcus furiosus (RdPf). Computational modeling allows detailed investigations of protein motions as a function of temperature, and neutron scattering experiments are used to compare to computational results. Just above the dynamical transition temperature which marks the onset of significant anharmonic motions of the protein, the computational simulations show both a significant reorientation of the average electrostatic force experienced by the coordinated Fe(3+) ion and a dramatic rise in its strength. At higher temperatures, additional anharmonic modes become activated and dominate the electrostatic fluctuations experienced by the ion. At 360 K, close to the optimal growth temperature of P. furiosus, simulations show that three anharmonic modes including motions of two conserved residues located at the protein active site (Ile7 and Ile40) give rise to the majority of the electrostatic fluctuations experienced by the Fe(3+) ion. The motions of these residues undergo displacements which may facilitate solvent access to the ion.


Asunto(s)
Rubredoxinas/química , Simulación por Computador , Modelos Moleculares , Simulación de Dinámica Molecular , Oxidación-Reducción , Electricidad Estática
15.
Proc Natl Acad Sci U S A ; 102(51): 18258-63, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16339896

RESUMEN

Experimental evidence suggests that the folding and aggregation of the amyloid beta-protein (Abeta) into oligomers is a key pathogenetic event in Alzheimer's disease. Inhibiting the pathologic folding and oligomerization of Abeta could be effective in the prevention and treatment of Alzheimer's disease. Here, using all-atom molecular dynamics simulations in explicit solvent, we probe the initial stages of folding of a decapeptide segment of Abeta, Abeta(21-30), shown experimentally to nucleate the folding process. In addition, we examine the folding of a homologous decapeptide containing an amino acid substitution linked to hereditary cerebral hemorrhage with amyloidosis-Dutch type, [Gln-22]Abeta(21-30). We find that: (i) when the decapeptide is in water, hydrophobic interactions and transient salt bridges between Lys-28 and either Glu-22 or Asp-23 are important in the formation of a loop in the Val-24-Lys-28 region of the wild-type decapeptide; (ii) in the presence of salt ions, salt bridges play a more prominent role in the stabilization of the loop; (iii) in water with a reduced density, the decapeptide forms a helix, indicating the sensitivity of folding to different aqueous environments; and (iv) the "Dutch" peptide in water, in contrast to the wild-type peptide, fails to form a long-lived Val-24-Lys-28 loop, suggesting that loop stability is a critical factor in determining whether Abeta folds into pathologic structures.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Mutación/genética , Pliegue de Proteína , Solventes/farmacología , Péptidos beta-Amiloides/genética , Interacciones Hidrofóbicas e Hidrofílicas , Lisina/genética , Lisina/metabolismo , Estructura Secundaria de Proteína , Electricidad Estática , Valina/genética , Valina/metabolismo
16.
Proc Natl Acad Sci U S A ; 102(17): 6015-20, 2005 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-15837927

RESUMEN

Oligomeric assemblies of the amyloid beta-protein (Abeta) have been implicated in the pathogenesis of Alzheimer's disease as a primary source of neurotoxicity. Recent in vitro studies have suggested that a 10-residue segment, Ala-21-Ala-30, forms a turn-like structure that nucleates the folding of the full-length Abeta. To gain a mechanistic insight, we simulated Abeta(21-30) folding by using a discrete molecular dynamics algorithm and a united-atom model incorporating implicit solvent and a variable electrostatic interaction strength (EIS). We found that Abeta(21-30) folds into a loop-like conformation driven by an effective hydrophobic attraction between Val-24 and the butyl portion of the Lys-28 side chain. At medium EIS [1.5 kcal/mol (1 cal = 4.18 J)], unfolded conformations almost disappear, in agreement with experimental observations. Under optimal conditions for folding, Glu-22 and Asp-23 form transient electrostatic interactions (EI) with Lys-28 that stabilize the loop conformations. Glu-22-Lys-28 is the most favored interaction. High EIS, as it occurs in the interior of proteins and aggregates, destabilizes the packing of Val-24 and Lys-28. Analysis of the unpacked structures reveals strong EI with predominance of the Asp-23-Lys-28 interaction, in agreement with studies of molecular modeling of full-length Abeta fibrils. The binary nature of the EI involving Lys-28 provides a mechanistic explanation for the linkage of amino acid substitutions at Glu-22 with Alzheimer's disease and cerebral amyloid angiopathy. Substitutions may alter the frequency of Glu-22 or Asp-23 involvement in contact formation and affect the stability of the folding nucleus formed in the Abeta(21-30) region.


Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Pliegue de Proteína , Estructura Secundaria de Proteína , Propiedades de Superficie
17.
Phys Rev Lett ; 91(13): 138103, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-14525339

RESUMEN

We study cold denaturation of proteins at high pressures. Using multicanonical Monte Carlo simulations of a model protein in a water bath, we investigate the effect of water density fluctuations on protein stability. We find that above the pressure where water freezes to the dense ice phase (approximately 2 kbars) the mechanism for cold denaturation with decreasing temperature is the loss of local low-density water structure. We find our results in agreement with data of bovine pancreatic ribonuclease A.


Asunto(s)
Frío , Modelos Químicos , Desnaturalización Proteica , Proteínas/química , Animales , Bovinos , Método de Montecarlo , Presión , Ribonucleasa Pancreática/química
18.
Biophys J ; 87(1): 521-33, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15240485

RESUMEN

Experimental observations suggest that proteins follow different folding pathways under different environmental conditions. We perform molecular dynamics simulations of a model of the c-Crk SH3 domain over a broad range of temperatures, and identify distinct pathways in the folding transition. We determine the kinetic partition temperature-the temperature for which the c-Crk SH3 domain undergoes a rapid folding transition with minimal kinetic barriers-and observe that below this temperature the model protein may undergo a folding transition by multiple folding pathways via only one or two intermediates. Our findings suggest the hypothesis that the SH3 domain, a protein fold for which only two-state folding kinetics was observed in previous experiments, may exhibit intermediate states under conditions that strongly stabilize the native state.


Asunto(s)
Simulación por Computador , Modelos Moleculares , Pliegue de Proteína , Proteínas Proto-Oncogénicas/química , Dominios Homologos src , Animales , Humanos , Proteínas Proto-Oncogénicas c-crk
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA