Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
RNA ; 28(12): 1582-1596, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36127124

RESUMEN

N4-acetylcytidine (ac4C) is an RNA nucleobase found in all domains of life. The establishment of ac4C in helix 45 (h45) of human 18S ribosomal RNA (rRNA) requires the combined activity of the acetyltransferase NAT10 and the box C/D snoRNA SNORD13. However, the molecular mechanisms governing RNA-guided nucleobase acetylation in humans remain unexplored. After applying comparative sequence analysis and site-directed mutagenesis to provide evidence that SNORD13 folds into three main RNA helices, we report two assays that enable the study of SNORD13-dependent RNA acetylation in human cells. First, we demonstrate that ectopic expression of SNORD13 rescues h45 in a SNORD13 knockout cell line. Next, we show that mutant snoRNAs can be used in combination with nucleotide resolution ac4C sequencing to define structure and sequence elements critical for SNORD13 function. Finally, we develop a second method that reports on the substrate specificity of endogenous NAT10-SNORD13 via mutational analysis of an ectopically expressed pre-rRNA substrate. By combining mutational analysis of these reconstituted systems with nucleotide resolution ac4C sequencing, our studies reveal plasticity in the molecular determinants underlying RNA-guided cytidine acetylation that is distinct from deposition of other well-studied rRNA modifications (e.g., pseudouridine). Overall, our studies provide a new approach to reconstitute RNA-guided cytidine acetylation in human cells as well as nucleotide resolution insights into the mechanisms governing this process.


Asunto(s)
Citidina , ARN Guía de Kinetoplastida , Humanos , Acetilación , ARN Guía de Kinetoplastida/metabolismo , Citidina/genética , Citidina/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Nucleótidos/metabolismo
2.
Nucleic Acids Res ; 50(11): 6284-6299, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35648437

RESUMEN

NAT10 is an essential enzyme that catalyzes N4-acetylcytidine (ac4C) in eukaryotic transfer RNA and 18S ribosomal RNA. Recent studies suggested that rRNA acetylation is dependent on SNORD13, a box C/D small nucleolar RNA predicted to base-pair with 18S rRNA via two antisense elements. However, the selectivity of SNORD13-dependent cytidine acetylation and its relationship to NAT10's essential function remain to be defined. Here, we demonstrate that SNORD13 is required for acetylation of a single cytidine of human and zebrafish 18S rRNA. In-depth characterization revealed that SNORD13-dependent ac4C is dispensable for human cell growth, ribosome biogenesis, translation and development. This loss of function analysis inspired a cross-evolutionary survey of the eukaryotic rRNA acetylation 'machinery' that led to the characterization of many novel metazoan SNORD13 genes. This includes an atypical SNORD13-like RNA in Drosophila melanogaster which guides ac4C to 18S rRNA helix 45 despite lacking one of the two rRNA antisense elements. Finally, we discover that Caenorhabditis elegans 18S rRNA is not acetylated despite the presence of an essential NAT10 homolog. Our findings shed light on the molecular mechanisms underlying SNORD13-mediated rRNA acetylation across eukaryotic evolution and raise new questions regarding the biological and evolutionary relevance of this highly conserved rRNA modification.


Asunto(s)
Eucariontes , ARN Ribosómico 18S , ARN Nucleolar Pequeño , Acetilación , Animales , Eucariontes/genética , Eucariontes/metabolismo , Humanos , ARN Ribosómico , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo
3.
J Am Chem Soc ; 140(40): 12667-12670, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30252461

RESUMEN

N4-acetylcytidine (ac4C) is a highly conserved modified RNA nucleobase whose formation is catalyzed by the disease-associated N-acetyltransferase 10 (NAT10). Here we report a sensitive chemical method to localize ac4C in RNA. Specifically, we characterize the susceptibility of ac4C to borohydride-based reduction and show this reaction can cause introduction of noncognate base pairs during reverse transcription (RT). Combining borohydride-dependent misincorporation with ac4C's known base-sensitivity provides a unique chemical signature for this modified nucleobase. We show this unique reactivity can be used to quantitatively analyze cellular RNA acetylation, study adapters responsible for ac4C targeting, and probe the timing of RNA acetylation during ribosome biogenesis. Overall, our studies provide a chemical foundation for defining an expanding landscape of cytidine acetyltransferase activity and its impact on biology and disease.


Asunto(s)
Citidina/análogos & derivados , ARN/química , Acetilación , Secuencia de Bases , Citidina/análisis , Humanos , Conformación de Ácido Nucleico , Oxidación-Reducción , ARN Ribosómico/química
4.
Hum Mol Genet ; 25(4): 728-39, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26744330

RESUMEN

The brain-specific miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 domain is implicated in several aspects of brain development and function, particularly in fine-tuning the dendritic outgrowth and spine remodelling of hippocampal neurons. Whether it might influence behaviour and memory-related processes has not yet been explored at the whole organism level. We previously reported that constitutive deletion of the miR-379/miR-410 gene cluster affects metabolic adaptation in neonatal mice. Here, we examined the role of this cluster in adult brain functions by subjecting mice with the constitutive deletion to a battery of behavioural and cognitive tests. We found that the lack of miR-379/miR-410 expression is associated with abnormal emotional responses, as demonstrated by increased anxiety-related behaviour in unfamiliar environments. In contrast, spontaneous exploration, general locomotion, mood levels and sociability remained unaltered. Surprisingly, miR-379/miR-410-deficient mice also showed normal learning and spatial (or contextual) memory abilities in hippocampus-dependent tasks involving neuronal plasticity. Taken together, the imprinted miR-379/miR-410 gene cluster thus emerges as a novel regulator of the two main post-natal physiological processes previously associated with imprinted, protein-coding genes: behaviour and energy homeostasis.


Asunto(s)
Ansiedad/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Yoduro Peroxidasa/metabolismo , MicroARNs/metabolismo , Animales , Ansiedad/metabolismo , Conducta Animal , Proteínas de Unión al Calcio , Femenino , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Familia de Multigenes , Eliminación de Secuencia
5.
EMBO J ; 33(19): 2216-30, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25124681

RESUMEN

In mammals, birth entails complex metabolic adjustments essential for neonatal survival. Using a mouse knockout model, we identify crucial biological roles for the miR-379/miR-410 cluster within the imprinted Dlk1-Dio3 region during this metabolic transition. The miR-379/miR-410 locus, also named C14MC in humans, is the largest known placental mammal-specific miRNA cluster, whose 39 miRNA genes are expressed only from the maternal allele. We found that heterozygote pups with a maternal--but not paternal--deletion of the miRNA cluster display partially penetrant neonatal lethality with defects in the maintenance of energy homeostasis. This maladaptive metabolic response is caused, at least in part, by profound changes in the activation of the neonatal hepatic gene expression program, pointing to as yet unidentified regulatory pathways that govern this crucial metabolic transition in the newborn's liver. Not only does our study highlight the physiological importance of miRNA genes that recently evolved in placental mammal lineages but it also unveils additional layers of RNA-mediated gene regulation at the Dlk1-Dio3 domain that impose parent-of-origin effects on metabolic control at birth and have likely contributed to mammal evolution.


Asunto(s)
Adaptación Fisiológica , Impresión Genómica , Gluconeogénesis/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Yoduro Peroxidasa/genética , MicroARNs/genética , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Northern Blotting , Proteínas de Unión al Calcio , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Glucogenólisis/fisiología , Humanos , Hipoglucemia/metabolismo , Hipoglucemia/patología , Cetonas/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Nucleic Acids Res ; 41(8): 4709-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23482395

RESUMEN

Defects in ribosome biogenesis trigger stress response pathways, which perturb cell proliferation and differentiation in several genetic diseases. In Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia, mutations in ribosomal protein genes often interfere with the processing of the internal transcribed spacer 1 (ITS1), the mechanism of which remains elusive in human cells. Using loss-of-function experiments and extensive RNA analysis, we have defined the precise position of the endonucleolytic cleavage E in the ITS1, which generates the 18S-E intermediate, the last precursor to the 18S rRNA. Unexpectedly, this cleavage is followed by 3'-5' exonucleolytic trimming of the 18S-E precursor during nuclear export of the pre-40S particle, which sets a new mechanism for 18S rRNA formation clearly different from that established in yeast. In addition, cleavage at site E is also followed by 5'-3' exonucleolytic trimming of the ITS1 by exonuclease XRN2. Perturbation of this step on knockdown of the large subunit ribosomal protein RPL26, which was recently associated to DBA, reveals the putative role of a highly conserved cis-acting sequence in ITS1 processing. These data cast new light on the original mechanism of ITS1 elimination in human cells and provide a mechanistic framework to further study the interplay of DBA-linked ribosomal proteins in this process.


Asunto(s)
Nucléolo Celular/enzimología , Citoplasma/enzimología , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/metabolismo , Secuencia de Bases , Secuencia Conservada , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Células HeLa , Humanos , Precursores del ARN/metabolismo , ARN Ribosómico 18S/biosíntesis , ARN Ribosómico 18S/química , Proteínas Ribosómicas/metabolismo
7.
J Cell Sci ; 125(Pt 11): 2709-20, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22393237

RESUMEN

Nuclear primary microRNA (pri-miRNA) processing catalyzed by the DGCR8-Drosha (Microprocessor) complex is highly regulated. Little is known, however, about how microRNA biogenesis is spatially organized within the mammalian nucleus. Here, we image for the first time, in living cells and at the level of a single microRNA cluster, the intranuclear distribution of untagged, endogenously-expressed pri-miRNAs generated at the human imprinted chromosome 19 microRNA cluster (C19MC), from the environment of transcription sites to single molecules of fully released DGCR8-bound pri-miRNAs dispersed throughout the nucleoplasm. We report that a large fraction of Microprocessor concentrates onto unspliced C19MC pri-miRNA deposited in close proximity to their genes. Our live-cell imaging studies provide direct visual evidence that DGCR8 and Drosha are targeted post-transcriptionally to C19MC pri-miRNAs as a preformed complex but dissociate separately. These dynamics support the view that, upon pri-miRNA loading and most probably concomitantly with Drosha-mediated cleavages, Microprocessor undergoes conformational changes that trigger the release of Drosha while DGCR8 remains stably bound to pri-miRNA.


Asunto(s)
Cromosomas Humanos Par 19/genética , Impresión Genómica/genética , MicroARNs/genética , Familia de Multigenes/genética , Proteínas/metabolismo , Ribonucleasa III/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Supervivencia Celular , Regulación de la Expresión Génica , Sitios Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cinética , MicroARNs/metabolismo , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasa III/química , Transcripción Genética
8.
Nucleic Acids Res ; 40(14): 6800-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22495932

RESUMEN

The imprinted Snurf-Snrpn chromosomal domain contains two large arrays of tandemly repeated, paternally expressed box C/D small-nucleolar RNA (snoRNA) genes: the SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters believed to play key roles in the fine-tuning of serotonin receptor (5-HT2C) pre-mRNA processing and in the etiology of the Prader-Willi Syndrome (PWS), respectively. SNORD115 and SNORD116 were recently proposed to undergo significant conversion into shorter RNA species, the so-called psnoRNAs. Here, we provide evidence that argues against the existence of abundant psnoRNAs in human or mouse brain. Instead, we characterize a previously unsuspected low-abundance, fibrillarin-associated SNORD115-derived smaller RNA species. Based on these findings, we strongly recommend that PWS-encoded SNORD115 and SNORD116 be considered as bona fide box C/D snoRNAs.


Asunto(s)
Familia de Multigenes , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño/genética , Animales , Secuencia de Bases , Sitios Genéticos , Impresión Genómica , Humanos , Ratones , Datos de Secuencia Molecular , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/metabolismo
9.
J Cell Sci ; 123(Pt 1): 70-83, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20016068

RESUMEN

The imprinted Snurf-Snrpn domain, also referred to as the Prader-Willi syndrome region, contains two approximately 100-200 kb arrays of repeated small nucleolar (sno)RNAs processed from introns of long, paternally expressed non-protein-coding RNAs whose biogenesis and functions are poorly understood. We provide evidence that C/D snoRNAs do not derive from a single transcript as previously envisaged, but rather from (at least) two independent transcription units. We show that spliced snoRNA host-gene transcripts accumulate near their transcription sites as structurally constrained RNA species that are prevented from diffusing, as well as multiple stable nucleoplasmic RNA foci dispersed in the entire nucleus but not in the nucleolus. Chromatin structure at these repeated arrays displays an outstanding parent-of-origin-specific higher-order organization: the transcriptionally active allele is revealed as extended DNA FISH signals whereas the genetically identical, silent allele is visualized as singlet DNA FISH signals. A similar allele-specific chromatin organization is documented for snoRNA gene arrays at the imprinted Dlk1-Dio3 domain. Our findings have repercussions for understanding the spatial organization of gene expression and the intra-nuclear fate of non-coding RNAs in the context of nuclear architecture.


Asunto(s)
Neuronas/metabolismo , Proteínas Nucleares/genética , ARN Nuclear/genética , ARN no Traducido/genética , Espermátides/metabolismo , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Impresión Genómica , Hipocampo/patología , Humanos , Hipotálamo/patología , Hibridación Fluorescente in Situ , Masculino , Ratones , Neuronas/patología , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patología , ARN Mensajero Almacenado/biosíntesis , ARN Mensajero Almacenado/genética , Ratas , Ratas Sprague-Dawley , Espermátides/patología , Testículo/patología , Activación Transcripcional
10.
Nat Commun ; 13(1): 3071, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654791

RESUMEN

The first cell fate commitment during mammalian development is the specification of the inner cell mass and trophectoderm. This irreversible cell fate commitment should be epigenetically regulated, but the precise mechanism is largely unknown in humans. Here, we show that naïve human embryonic stem (hES) cells can transdifferentiate into trophoblast stem (hTS) cells, but primed hES cells cannot. Our transcriptome and methylome analyses reveal that a primate-specific miRNA cluster on chromosome 19 (C19MC) is active in naïve hES cells but epigenetically silenced in primed ones. Moreover, genome and epigenome editing using CRISPR/Cas systems demonstrate that C19MC is essential for hTS cell maintenance and C19MC-reactivated primed hES cells can give rise to hTS cells. Thus, we reveal that C19MC activation confers differentiation potential into trophoblast lineages on hES cells. Our findings are fundamental to understanding the epigenetic regulation of human early development and pluripotency.


Asunto(s)
MicroARNs , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Epigénesis Genética , Humanos , Mamíferos , MicroARNs/genética , Trofoblastos
11.
Nucleic Acids Res ; 37(10): 3464-73, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19339516

RESUMEN

MicroRNAs are tiny RNA molecules that play important regulatory roles in a broad range of developmental, physiological or pathological processes. Despite recent progress in our understanding of miRNA processing and biological functions, little is known about the regulatory mechanisms that control their expression at the transcriptional level. C19MC is the largest human microRNA gene cluster discovered to date. This 100-kb long cluster consists of 46 tandemly repeated, primate-specific pre-miRNA genes that are flanked by Alu elements (Alus) and embedded within a approximately 400- to 700-nt long repeated unit. It has been proposed that C19MC miRNA genes are transcribed by RNA polymerase III (Pol-III) initiating from A and B boxes embedded in upstream Alu repeats. Here, we show that C19MC miRNAs are intron-encoded and processed by the DGCR8-Drosha (Microprocessor) complex from a previously unidentified, non-protein-coding Pol-II (and not Pol-III) transcript which is mainly, if not exclusively, expressed in the placenta.


Asunto(s)
Intrones , MicroARNs/genética , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Alfa-Amanitina/farmacología , Animales , Secuencia de Bases , Línea Celular Tumoral , Femenino , Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/metabolismo , Datos de Secuencia Molecular , Placenta/metabolismo , Primates/genética , ARN Mensajero/metabolismo , Ribonucleasa III/metabolismo
12.
Nucleic Acids Res ; 35(19): 6571-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17905820

RESUMEN

The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.


Asunto(s)
Nucléolo Celular/química , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Respuesta al Choque Térmico , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Empalme Alternativo , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/química , Pollos , Inhibidores de Cisteína Proteinasa/farmacología , Citoplasma/química , Proteínas de Unión al ADN/química , Dactinomicina/farmacología , Exones , Eliminación de Gen , Humanos , Datos de Secuencia Molecular , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Inhibidores de Proteasoma , Isoformas de Proteínas/análisis , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA