Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Magn Reson Med ; 85(6): 3353-3369, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33349979

RESUMEN

PURPOSE: Single-sided 1 H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients. METHODS: Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of 1 H nuclei of fluids, including marrow, confined inside the bone, was analyzed by quasi-continuous T2 distributions and separated into two 1 H pools: short and long T2 components. The NMR parameters were estimated using models of trabecular bone structure, and compared with the corresponding micro-CT. RESULTS: Without any further assumptions, the internal reference parameter (short T2 signal intensity fraction) enabled prediction of the micro-CT parameters BV/TV (volume of the trabeculae/total sample volume) and BS/TV (external surface of the trabeculae/total sample volume) with linear correlation coefficient >0.80. The assignment of the two pools to intratrabecular and intertrabecular components yielded an estimate of average intratrabecular porosity (33 ± 5)%. Using the proposed models, the NMR-estimated BV/TV and BS/TV were found to be linearly related to the corresponding micro-CT values with high correlation (>0.90 for BV/TV; >0.80 for BS/TV) and agreement coefficients. CONCLUSION: Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.


Asunto(s)
Huesos , Hueso Esponjoso , Animales , Huesos/diagnóstico por imagen , Hueso Esponjoso/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Porosidad , Microtomografía por Rayos X
2.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298936

RESUMEN

Nuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the 1H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening. With difficulty accessing clinically suitable exams, the diagnosis of bone diseases, such as osteoporosis, and the associated fracture risk estimation is based on the assessment of bone mineral density (BMD), obtained by the dual-energy X-ray absorptiometry (DXA). However, integrating the information about the structure of the bone with the bone mineral density has been shown to improve fracture risk estimation related to osteoporosis. Portable NMR, based on low-field single-sided NMR devices, is a promising and appealing approach to assess NMR properties of biological tissues with the aim of medical applications. Since these scanners detect the signal from a sensitive volume external to the magnet, they can be used to perform NMR measurement without the need to fit a sample inside a bore of a magnet, allowing, in principle, in vivo application. Techniques based on NMR single-sided devices have the potential to provide a high impact on the clinical routine because of low purchasing and running costs and low maintenance of such scanners. In this review, the development of new methodologies to investigate structural properties of trabecular bone exploiting single-sided NMR devices is reviewed, and current limitations and future perspectives are discussed.


Asunto(s)
Enfermedades Óseas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Absorciometría de Fotón/métodos , Animales , Densidad Ósea/fisiología , Hueso Esponjoso/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Humanos , Osteoporosis/diagnóstico por imagen
3.
Magn Reson Chem ; 58(9): 889-901, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32436248

RESUMEN

Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses. Despite the recognized validity of these methods, they are affected by evident limitations. Nuclear magnetic resonance (NMR) profiling, often named NMR stratigraphy, is an NMR relaxometry technique applied by single-sided portable devices developed to overcome the disadvantages of microinvasive stratigraphic analyses. The potential of this approach on artworks, including wall paintings and a few examples of painted canvas, is described in the literature. In this study, NMR profiles of painting on canvas were examined by analyzing transverse relaxation time data by T2 quasi-continuous distributions and the results compared with standard stratigraphic cross-sections analysis. Combining signal intensity and T2 quasi-continuous distributions, the identification of textile, preparatory, and paint layers was enhanced. The diction "NMR stratigraphy" for these inhomogeneous layered artworks is also discussed. Indeed, unlike the stratigraphic cross-sections, NMR profiles provide information on a volume (flat slice), rather than on a surface, and the collected signal can derive from nonuniform and partially overlapping layers. This study paves the way for extensive investigations on relaxation time quasi-continuous distributions in various binder/pigment mixtures in order to improve the reliability of NMR profile as an innovative, non-invasive, and nondestructive method for analyzing paintings on canvas.

4.
Molecules ; 24(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31614973

RESUMEN

Fast-field-cycling nuclear magnetic resonance (FFC-NMR) is a powerful technique for non-destructively probing the properties of fluids contained within the pores of porous materials. FFC-NMR measures the spin-lattice relaxation rate R 1 ( f ) as a function of NMR frequency f over the kHz to MHz range. The shape and magnitude of the R 1 ( f ) dispersion curve is exquisitely sensitive to the relative motion of pairs of spins over time scales of picoseconds to microseconds. To extract information on the nano-scale dynamics of spins, it is necessary to identify a model that describes the relative motion of pairs of spins, to translate the model dynamics to a prediction of R 1 ( f ) and then to fit to the experimental dispersion. The principles underpinning one such model, the 3 τ model, are described here. We present a new fitting package using the 3 τ model, called 3TM, that allows users to achieve excellent fits to experimental relaxation rates over the full frequency range to yield five material properties and much additional derived information. 3TM is demonstrated on historic data for mortar and plaster paste samples.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Difusión , Porosidad
5.
Magn Reson Med ; 79(1): 501-510, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28394083

RESUMEN

PURPOSE: Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. METHODS: Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. RESULTS: The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. CONCLUSIONS: Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Absorciometría de Fotón , Hueso Esponjoso/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Tomografía Computarizada por Rayos X , Animales , Densidad Ósea , Enfermedades Óseas/diagnóstico por imagen , Calibración , Imagenología Tridimensional , Microcirculación , Porosidad , Porcinos , Microtomografía por Rayos X
6.
Magn Reson Chem ; 53(1): 34-47, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25322710

RESUMEN

Scientists applying magnetic resonance techniques to cultural heritage are now a quite vast and international community, even if these applications are not yet well known outside this community. Not only laboratory experiments but also measurements in the field are now possible, with the use of portable nuclear magnetic resonance (NMR) instruments that enable non-invasive and non-destructive studies on items of any size, of high artistic and historical value as well as diagnosis of their conservation state. The situation was completely different in the second half of the 1990s when our group started working on applications of NMR to cultural heritage, by combining the knowledge of NMR for fluids in porous media at the University of Bologna, with the skilfulness of the chemists for cultural heritage of CNR and University of Florence, and Safeguarding Cultural Heritage Department of Aosta. Since then, our interest has been mainly devoted to develop methods to study the structure of pore space and their changes as a result of the decay, as well as to evaluate performance of the protective and conservative treatments of porous materials like stone, ceramic, cements and wood. In this paper, we will review the pathway that led us from the first tentative experiments, in the second half of the 1990s to the current work on these topics.

7.
Langmuir ; 30(36): 10871-7, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25152010

RESUMEN

Cement hydration occurs when water is added to cement powder, leading to the formation of crystalline products like Portlandite and the quasi-amorphous, poorly crystalline, calcium silicate hydrate (C-S-H) gel. Despite its importance in determining the final properties of the cement, many models exist for the nano and sub-nano level organization of this "liquid stone." (1)H NMR relaxometry in White Portland Cement paste during hydration allowed us to monitor the formation and evolution of the multiscale porosity of the cement, with the formation of structures at nano and sub-nano levels of C-S-H gel (calcium silicate interlayer water, water in small and large gel pores) along with three low-mobility (1)H pools, identified as (1)H nuclei in C-S-H layers, likely belonging to OH groups, with (1)H nuclei in Portlandite, and in crystal water of Ettringite. By assuming these assignments, our data allowed us to compute the distances of pairs of (1)H nuclei in Portlandite and in crystal water ((1.9 ± 0.2) Å and (1.6 ± 0.1) Å, respectively), consistent with the known values of these distances. The picture of the porous structure at nano and sub-nano levels emerging from our results is consistent with the Jennings colloidal model for C-S-H gel. Moreover, the constant values observed during hydration of parameters extracted from our data analysis strongly support that model, being compatible with the picture of C-S-H gel developing in comparable-sized clumps of the same composition, but not easily interpretable by models proposing quasi continuous sheets of C-S-H layers.

8.
J Imaging ; 9(11)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37998096

RESUMEN

This work tackles the problem of image restoration, a crucial task in many fields of applied sciences, focusing on removing degradation caused by blur and noise during the acquisition process. Drawing inspiration from the multi-penalty approach based on the Uniform Penalty principle, discussed in previous work, here we develop a new image restoration model and an iterative algorithm for its effective solution. The model incorporates pixel-wise regularization terms and establishes a rule for parameter selection, aiming to restore images through the solution of a sequence of constrained optimization problems. To achieve this, we present a modified version of the Newton Projection method, adapted to multi-penalty scenarios, and prove its convergence. Numerical experiments demonstrate the efficacy of the method in eliminating noise and blur while preserving the image edges.

9.
J Imaging ; 7(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-34460617

RESUMEN

This paper is concerned with the reconstruction of relaxation time distributions in Nuclear Magnetic Resonance (NMR) relaxometry. This is a large-scale and ill-posed inverse problem with many potential applications in biology, medicine, chemistry, and other disciplines. However, the large amount of data and the consequently long inversion times, together with the high sensitivity of the solution to the value of the regularization parameter, still represent a major issue in the applicability of the NMR relaxometry. We present a method for two-dimensional data inversion (2DNMR) which combines Truncated Singular Value Decomposition and Tikhonov regularization in order to accelerate the inversion time and to reduce the sensitivity to the value of the regularization parameter. The Discrete Picard condition is used to jointly select the SVD truncation and Tikhonov regularization parameters. We evaluate the performance of the proposed method on both simulated and real NMR measurements.

10.
J Phys Chem B ; 113(31): 10580-6, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19594125

RESUMEN

Nuclear magnetic resonance relaxation analysis of liquid water (1)H nuclei in real porous media, selected for their similar composition (carbonate rocks) and different pore space architecture, polluted with calcium nitrate, is presented to study the kinetics of water condensation and salt deliquescence inside the pore space. These phenomena are responsible for deterioration of porous materials when exposed to environmental injury by pollution in a humid atmosphere. The theory is well described for simple pore geometries, but it is not yet well understood in real porous media with wide distributions of pore sizes and connections. The experiment is performed by following in time the formation of liquid water inside the pore space by T(1) and T(2) relaxation time distributions. The distributions allow one to see the effects of both the salt concentration and the pore space structure on the amount of water vapor condensed and its kinetics. It is shown that, for a given lithotype, even with different amounts of pollutant, the rate-average relaxation time T(1ra) tends to increase monotonically with NMR signal, proportional to the amount of liquid water. T(1ra) is often inversely associated with surface-to-volume ratio. This suggests a trend toward the filling of larger pores as amounts of liquid water increase, but it does not indicate a strict sequential filling of pores in order of size and starting with the smallest; in fact, relaxation time distributions show clearly that this is not the case. Increased amounts of salt lead to both markedly increased rates and markedly increased amounts of water absorption. NMR measurements of amounts of water, together with relaxation time distributions, give the possibility of information on the effect of pollution in porous materials exposed to humid atmospheres but sheltered from liquid water, even before the absorption of large amounts of moisture and subsequent damage. These phenomena are of importance also in other fields, such as the exploitation of geothermal energy.

11.
Materials (Basel) ; 11(7)2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30037065

RESUMEN

There is growing interest in construction field issues related to environmental protection, energy saving and raw materials. Therefore, the interest in recycling waste materials to produce new construction ones is constantly increasing. This study proposes a new methodology to produce lightweight aggregates (LWAs) by alkali-activation of two different waste powders: a digested spent bentonite clay and a basalt powder. Metakaolin, as secondary precursor, was added to the mixtures according to mix-design proportions, to improve the mechanical properties of the final materials, while a specific activators mix of Sodium Silicate and Sodium Hydroxide enabled the alkali-activation. The expansion process, on the other hand, was obtained using Peroxide within the liquid mix. The experimental LWAs were analyzed and tested in compliance with the EN 13055-1 standard. A more in-depth analysis on LWAs' air voids content and porosity was also carried out by the means of Mercury Intrusion Porosimetry and Nuclear Magnetic Resonance. The results were compared with those obtained from commercial Lightweight Expanded Clay Aggregate, which represents one of the most common LWAs in the construction field. According to the presented preliminary results, the use of alkali-activated waste powders seems to be a suitable solution for the production of eco-friendly LWAs by allowing the recycling of waste materials and energy saving for their production.

12.
ACS Appl Mater Interfaces ; 9(42): 37279-37288, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28960056

RESUMEN

The changes in the surface wettability of many materials are receiving increased attention in recent years. It is not too hard to fabricate resistant hydrophobic surfaces through products bearing both hydrophobic and reactive hydrophilic end groups. More challenging is obtaining resistant nonwetting surfaces through noncovalent reversible bonds. In this work, a fluorinated oligo(ethylenesuccinamide), soluble in solvent benign for operators and environment, has been synthesized. It contains two opposite functional groups (perfluoropolyether segments and amidic groups) (SC2-PFPE) that provide water repellency while hydrophilicity is retained. Its performance has been tested on porous calcarenite and investigated by magnetic resonance imaging, water capillary absorption, and vapor diffusivity tests. The results demonstrate that SC2-PFPE modifies the wettability of porous substrates in a drastic and durable way and reduces the vapor condensation inside the pore space due to the perfluoropolyether segments that act at the air/surface interface.

13.
Magn Reson Imaging ; 23(2): 359-61, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15833647

RESUMEN

The current systems are unable to control and predict the cured meat composition nondestructively and in a reasonable time for production needs. In this work, T1 and T2 maps were obtained, with a monoexponential model, on internal sections of Longissimus dorsi muscle at increasing salting times. The maps allow one to visualize the salting process nondestructively and noninvasively. The method goes beyond the simple qualitative visualization, because, for each section of the sample and in any region of the section, it is possible to obtain quantitative information on the progress of salting and to predict salt-to-moisture ratios. In addition, detailed relaxation measurements were performed on samples cored after imaging in order to define better the relaxation properties of the dry-cured meat.


Asunto(s)
Imagen por Resonancia Magnética , Carne/análisis , Animales , Cloruro de Sodio , Porcinos
14.
Nat Commun ; 6: 7785, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26183259

RESUMEN

Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO2 vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 µm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean.


Asunto(s)
Aclimatación , Antozoos/crecimiento & desarrollo , Calcificación Fisiológica/fisiología , Arrecifes de Coral , Ecosistema , Agua de Mar/química , Animales , Antozoos/metabolismo , Dióxido de Carbono/química , Concentración de Iones de Hidrógeno , Mar Mediterráneo , Océanos y Mares , Porosidad
15.
J Phys Chem B ; 114(5): 1767-74, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20085239

RESUMEN

Time-domain nuclear magnetic resonance (TD-NMR) of (1)H nuclei has been used to monitor and model changes of endodontic cement pastes during hydration, from the initial reaction period up to hours and days. The (1)H in the samples are divided into two major spin groups by fitting each free induction decay, acquired after the second pulse of an inversion recovery (I-R) pulse sequence with variable interpulse delay, by the sum of a quasi-Gaussian (signal from low mobility nuclei) and an exponential (from higher mobility nuclei). The extrapolations to zero time of the signals from the two spin groups give two sets of I-R data that have been analyzed to give quasi-continuous T(1) distributions. After about a day, two clearly solid components appear. From a day to a few days, three liquid populations are identified, one of them mainly in the low-mobility spin group, which later merge, giving a single T(1) or T(2) peak. The rapid onset of the solid components, at the cost of the liquid, and the rapid changes of the relaxation time distributions of all components are clear indicators of the amount and kinetics of reaction products formation (C-S-H gel and Portlandite) and of the C-S-H micronanoporous structure buildup and evolution. At 30 days of hydration, the very short T(1) and T(2) liquid component (T(1) congruent with 200 micros and T(2) congruent with 50 micros) can be assigned to C-S-H intralayer water (thickness of the order of fractions of a nanometer) and the remaining liquid signal to interlayer water (thickness of the order of 1 nm). Comparisons are made among a widely used commercial endodontic cement paste and two more recent commercial pastes, with additive compounds to make the hydration process faster and to increase the workability. Parameters can be extracted from the data to characterize the different kinetics and nanostructure of the pore space formed up to 30 days. The parameters are in agreement with the expected effects of the additives, so the parameters can be used to optimize the formulation of new pastes, in order to improve their therapeutic performance.


Asunto(s)
Hidrógeno/química , Nanoestructuras/química , Cinética , Espectroscopía de Resonancia Magnética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA