Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(1): 172-87, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074867

RESUMEN

Mitofusin 2 (MFN2) plays critical roles in both mitochondrial fusion and the establishment of mitochondria-endoplasmic reticulum (ER) interactions. Hypothalamic ER stress has emerged as a causative factor for the development of leptin resistance, but the underlying mechanisms are largely unknown. Here, we show that mitochondria-ER contacts in anorexigenic pro-opiomelanocortin (POMC) neurons in the hypothalamus are decreased in diet-induced obesity. POMC-specific ablation of Mfn2 resulted in loss of mitochondria-ER contacts, defective POMC processing, ER stress-induced leptin resistance, hyperphagia, reduced energy expenditure, and obesity. Pharmacological relieve of hypothalamic ER stress reversed these metabolic alterations. Our data establish MFN2 in POMC neurons as an essential regulator of systemic energy balance by fine-tuning the mitochondrial-ER axis homeostasis and function. This previously unrecognized role for MFN2 argues for a crucial involvement in mediating ER stress-induced leptin resistance.


Asunto(s)
Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Animales , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Proopiomelanocortina/metabolismo
2.
Pharmacol Rev ; 76(3): 323-357, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697859

RESUMEN

Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.


Asunto(s)
Compuestos de Litio , Humanos , Animales , Compuestos de Litio/farmacología , Compuestos de Litio/uso terapéutico , Antimaníacos/farmacología , Antimaníacos/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores
3.
Brain ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769595

RESUMEN

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.

4.
Cell Mol Life Sci ; 80(12): 367, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37987826

RESUMEN

BACKGROUND: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS: We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS: Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS: In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.


Asunto(s)
Enfermedad de Huntington , Trastornos Motores , Humanos , Animales , Ratones , Tálamo , Cuerpo Estriado , Movimiento , Modelos Animales de Enfermedad , Proteínas Represoras , Factores de Transcripción Forkhead/genética
5.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955716

RESUMEN

Parkinson's disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (ß-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, ß-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.


Asunto(s)
Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Tronco Encefálico/metabolismo , Enfermedad de Parkinson/metabolismo , Primates , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , gamma-Sinucleína/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163729

RESUMEN

The synuclein family consists of α-, ß-, and γ-Synuclein (α-Syn, ß-Syn, and γ-Syn) expressed in the neurons and concentrated in synaptic terminals. While α-Syn is at the center of interest due to its implication in the pathogenesis of Parkinson's disease (PD) and other synucleinopathies, limited information exists on the other members. The current study aimed at investigating the biological role of γ-Syn controlling the midbrain dopamine (DA) function. We generated two different mouse models with: (i) γ-Syn overexpression induced by an adeno-associated viral vector and (ii) γ-Syn knockdown induced by a ligand-conjugated antisense oligonucleotide, in order to modify the endogenous γ-Syn transcription levels in midbrain DA neurons. The progressive overexpression of γ-Syn decreased DA neurotransmission in the nigrostriatal and mesocortical pathways. In parallel, mice evoked motor deficits in the rotarod and impaired cognitive performance as assessed by novel object recognition, passive avoidance, and Morris water maze tests. Conversely, acute γ-Syn knockdown selectively in DA neurons facilitated forebrain DA neurotransmission. Importantly, modifications in γ-Syn expression did not induce the loss of DA neurons or changes in α-Syn expression. Collectively, our data strongly suggest that DA release/re-uptake processes in the nigrostriatal and mesocortical pathways are partially dependent on substantia nigra pars compacta /ventral tegmental area (SNc/VTA) γ-Syn transcription levels, and are linked to modulation of DA transporter function, similar to α-Syn.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , gamma-Sinucleína , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones , Sustancia Negra/metabolismo , Transmisión Sináptica/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , gamma-Sinucleína/genética , gamma-Sinucleína/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34445375

RESUMEN

Fast and sustained antidepressant effects of ketamine identified the mammalian target of rapamycin (mTOR) signaling pathway as the main modulator of its antidepressive effects. Thus, mTOR signaling has become integral for the preclinical evaluation of novel compounds to treat depression. However, causality between mTOR and depression has yet to be determined. To address this, we knocked down mTOR expression in mice using an acute intracerebral infusion of small interfering RNAs (siRNA) in the infralimbic (IL) or prelimbic (PrL) cortices of the medial prefrontal cortex (mPFC), and evaluated depressive- and anxious-like behaviors. mTOR knockdown in IL, but not PrL, cortex produced a robust depressive-like phenotype in mice, as assessed in the forced swimming test (FST) and the tail suspension test (TST). This phenotype was associated with significant reductions of mTOR mRNA and protein levels 48 h post-infusion. In parallel, decreased brain-derived neurotrophic factor (BDNF) expression was found bilaterally in both IL and PrL cortices along with a dysregulation of serotonin (5-HT) and glutamate (Glu) release in the dorsal raphe nucleus (DRN). Overall, our results demonstrate causality between mTOR expression in the IL cortex and depressive-like behaviors, but not in anxiety.


Asunto(s)
Depresión/psicología , Corteza Prefrontal/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/genética , Depresión/metabolismo , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/metabolismo , Técnicas de Silenciamiento del Gen , Ácido Glutámico/metabolismo , Suspensión Trasera , Masculino , Ratones , Serotonina/metabolismo , Natación
8.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805843

RESUMEN

α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson's disease (PD). Point mutations and multiplications of the α-Syn, which encodes the SNCA gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for PD if delivered to the key affected neurons. Several experimental strategies for PD have been developed in recent years using oligonucleotide therapeutics. However, some of them have failed or even caused neuronal toxicity. One limiting step in the success of oligonucleotide-based therapeutics is their delivery to the brain compartment, and once there, to selected neuronal populations. Previously, we developed an indatraline-conjugated antisense oligonucleotide (IND-1233-ASO), that selectively reduces α-Syn synthesis in midbrain monoamine neurons of mice, and nonhuman primates. Here, we extended these observations using a transgenic male mouse strain carrying both A30P and A53T mutant human α-Syn (A30P*A53T*α-Syn). We found that A30P*A53T*α-Syn mice at 4-5 months of age showed 3.5-fold increases in human α-Syn expression in dopamine (DA) and norepinephrine (NE) neurons of the substantia nigra pars compacta (SNc) and locus coeruleus (LC), respectively, compared with mouse α-Syn levels. In parallel, transgenic mice exhibited altered nigrostriatal DA neurotransmission, motor alterations, and an anxiety-like phenotype. Intracerebroventricular IND-1233-ASO administration (100 µg/day, 28 days) prevented the α-Syn synthesis and accumulation in the SNc and LC, and recovered DA neurotransmission, although it did not reverse the behavioral phenotype. Therefore, the present therapeutic strategy based on a conjugated ASO could be used for the selective inhibition of α-Syn expression in PD-vulnerable monoamine neurons, showing the benefit of the optimization of ASO molecules as a disease modifying therapy for PD and related α-synucleinopathies.


Asunto(s)
Glicoconjugados/genética , Oligonucleótidos Antisentido/administración & dosificación , Enfermedad de Parkinson/terapia , Mutación Puntual , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética , Sustitución de Aminoácidos , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Glicoconjugados/administración & dosificación , Glicoconjugados/metabolismo , Humanos , Indanos/administración & dosificación , Indanos/química , Indanos/metabolismo , Inyecciones Intraventriculares , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Metilaminas/administración & dosificación , Metilaminas/química , Metilaminas/metabolismo , Ratones , Ratones Transgénicos , Norepinefrina/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Transmisión Sináptica , alfa-Sinucleína/metabolismo
9.
J Neurosci ; 38(4): 814-825, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29217686

RESUMEN

Synaptic protein α-synuclein (α-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinson's disease. Here, we report that α-SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also show that premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking α-SYN resembles the effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic α-SYN. Interestingly, NSC loss in α-SYN-deficient mice can be prevented by viral delivery of human α-SYN into their sustantia nigra or by treatment with l-DOPA, suggesting that α-SYN regulates dopamine availability to NSCs. Our data indicate that α-SYN, present in dopaminergic nerve terminals supplying the subependymal zone, acts as a niche component to sustain the neurogenic potential of adult NSCs and identify α-SYN and DA as potential targets to ameliorate neurogenic defects in the aging and diseased brain.SIGNIFICANCE STATEMENT We report an essential role for the protein α-synuclein present in dopaminergic nigral afferents in the regulation of adult neural stem cell maintenance, identifying the first synaptic regulator with an implication in stem cell niche biology. Although the exact role of α-synuclein in neural transmission is not completely clear, our results indicate that it is required for stemness and the preservation of neurogenic potential in concert with dopamine.


Asunto(s)
Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Células-Madre Neurales/metabolismo , Nicho de Células Madre/fisiología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/citología , Senescencia Celular/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas Aferentes/citología , Neuronas Aferentes/metabolismo
10.
Glia ; 67(6): 1122-1137, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30635928

RESUMEN

Elevation of energy metabolism and disturbance of astrocyte number/function in the ventral anterior cingulate cortex (vACC) contributes to the pathophysiology of major depressive disorder (MDD). Functional hyperactivity of vACC may result from reduced astrocytic glutamate uptake and increased neuronal excitation. Here we tested this hypothesis by knocking-down astrocytic glutamate transporter GLAST/GLT-1 expression in mouse infralimbic (IL, rodent equivalent of vACC) or prelimbic (PrL) cortices using RNAi strategies. Unilateral siRNA (small interfering RNA) microinfusion targeting GLAST or GLT-1 in mouse IL induced a moderate (20-30%) and long-lasting (7 days) decrease in their expression. Intra-IL GLAST-/GLT-1 siRNA microinfusion reduced the number of glial fibrillary acidic protein (GFAP)-positive and glutamine synthetase (GS)-positive astrocytes and evoked a depressive-like phenotype reversed by citalopram and ketamine. Intra-IL GLAST or GLT-1 knockdown markedly reduced serotonin (5-HT) release in the dorsal raphe nucleus (DR) and induced an overall reduction of brain-derived neurotrophic factor (BDNF) expression in ipsilateral and contralateral hemispheres. Egr-1 (early growth response protein-1) labeling suggests that both siRNAs enhance the GABAergic tone onto DR 5-HT neurons, leading to an overall decrease of 5-HT function, likely related to the widespread reduction on BDNF expression. Conversely, similar reductions of GLAST and GLT-1 expression in PrL did not induce a depressive-like phenotype. These results suggest that a focal glial change in IL translates into global change of brain activity by virtue of the descending projections from IL to DR and the subsequent attenuation of serotonergic function in forebrain, an effect perhaps related to the varied symptomatology of MDD.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Trastorno Depresivo Mayor/metabolismo , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/deficiencia , Fenotipo , Animales , Trastorno Depresivo Mayor/genética , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/genética , Técnicas de Silenciamiento del Gen/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Mol Ther ; 26(6): 1552-1567, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29628303

RESUMEN

The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Modelos Animales de Enfermedad , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
12.
Mol Ther ; 26(2): 550-567, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29273501

RESUMEN

Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson's disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake inhibitor indatraline (IND), to selectively reduce α-synuclein expression in the brainstem monoamine nuclei of mice after intranasal delivery. Following internalization of the conjugated oligonucleotides in monoamine neurons, reduced levels of endogenous α-synuclein mRNA and protein were found in substantia nigra pars compacta (SNc), ventral tegmental area (VTA), dorsal raphe nucleus (DR), and locus coeruleus (LC). α-Synuclein knockdown by ∼20%-40% did not cause monoaminergic neurodegeneration and enhanced forebrain dopamine (DA) and 5-HT release. Conversely, a modest human α-synuclein overexpression in DA neurons markedly reduced striatal DA release. These results indicate that α-synuclein negatively regulates monoamine neurotransmission and set the stage for the testing of non-viral inhibitory oligonucleotides as disease-modifying agents in α-synuclein models of PD.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Oligonucleótidos/genética , alfa-Sinucleína/genética , Administración Intranasal , Animales , Células Cultivadas , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Ratones , Vías Nerviosas , Oligonucleótidos/administración & dosificación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Prosencéfalo/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Serotonina/metabolismo , Transducción de Señal , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología , Transmisión Sináptica/genética
13.
iScience ; 27(5): 109787, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38711453

RESUMEN

Depression is a devastating mood disorder that causes significant disability worldwide. Current knowledge of its pathophysiology remains modest and clear biological markers are lacking. Emerging evidence from human and animal models reveals persistent alterations in endoplasmic reticulum (ER) homeostasis, suggesting that ER stress-related signaling pathways may be targets for prevention and treatment. However, the neurobiological basis linking the pathways involved in depression-related ER stress remains unknown. Here, we report that an induced model of ER stress in mouse serotonin (5-HT) neurons is associated with reduced Egr1-dependent 5-HT cellular activity and 5-HT neurotransmission, resulting in neuroplasticity deficits in forebrain regions and a depressive-like phenotype. Ketamine administration engages downstream eIF2α signaling to trigger rapid neuroplasticity events that rescue the depressive-like effects. Collectively, these data identify ER stress in 5-HT neurons as a cellular pathway involved in the pathophysiology of depression and show that eIF2α is critical in eliciting ketamine's fast antidepressant effects.

14.
Biomedicines ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36831077

RESUMEN

In patients affected by Parkinson's disease (PD), up to 50% of them experience cognitive changes, and psychiatric disturbances, such as anxiety and depression, often precede the onset of motor symptoms and have a negative impact on their quality of life. Pathologically, PD is characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) and the presence of intracellular inclusions, called Lewy bodies and Lewy neurites, composed mostly of α-synuclein (α-Syn). Much of PD research has focused on the role of α-Syn aggregates in the degeneration of SNc DA neurons due to the impact of striatal DA deficits on classical motor phenotypes. However, abundant Lewy pathology is also found in other brain regions including the midbrain raphe nuclei, which may contribute to non-motor symptoms. Indeed, dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD. However, little is known about the functional consequences of α-Syn inclusions in this neuronal population other than DA neurons. Here, we provide an overview of the current knowledge of α-Syn and its role in regulating the 5-HT function in health and disease. Understanding the relative contributions to α-Syn-linked alterations in the 5-HT system may provide a basis for identifying PD patients at risk for developing depression and could lead to a more targeted therapeutic approach.

15.
EMBO Mol Med ; 15(3): e15847, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36740977

RESUMEN

Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management.


Asunto(s)
Células Madre Pluripotentes Inducidas , Levodopa , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Levodopa/uso terapéutico , Levodopa/metabolismo , Fenotipo , Humanos
16.
Artículo en Inglés | MEDLINE | ID: mdl-35840289

RESUMEN

OBJECTIVE: Recently, we reported on a new MDD-like mouse model based on a regionally selective knockdown of astroglial glutamate transporters, GLAST/GLT-1, in infralimbic cortex (IL) which evokes widespread changes in mouse brain associated with the typical alterations found in MDD patients. To further characterize this new MDD-like mouse model, here we examine some transcriptional elements of glutamatergic/GABAergic neurotransmission and neuroplasticity in forebrain regions in the GLT-1 knockdown mice. Furthermore, we assess the acute ketamine effects on these transcriptional processes. MATERIAL AND METHODS: We used a small interfering RNA (siRNA) pool targeting GLT-1 mRNA to disrupt the GLT-1 transcription in mouse IL. Histological assays were performed to examine postsynaptic density protein-95 (PSD95), neuritin (NRN), glutamine acid descarboxilase-65 (GAD65), and GLT-1 mRNA expression in IL and hippocampus. RESULTS: Knockdown of GLT-1 in mouse IL leads to decreased expression of PSD95 and NRN neuroplasticity mRNAs in IL and hippocampus, which was reversed by an acute dose of ketamine antidepressant. Likewise, a single dose of ketamine also increased the mRNA levels of GAD65 and GLT-1 in IL of GLT-1 knockdown mice, reaching the basal values of control mice. CONCLUSIONS: The glutamatergic neuronal hyperactivity and deficits in the GABA system resulting from siRNA-induced astroglial glutamate transporter knockdown in IL can compromise the integrity/plasticity of neurocircuits affected in MDD. Suitable depressive-like animal models to address the neurobiological changes in MDD are an unmet need and the development of the GLAST/GLT-1 knockdown mouse model may represent a better option to understand the rapid-acting antidepressant effects of ketamine.


Asunto(s)
Astrocitos , Ketamina , Plasticidad Neuronal , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Astrocitos/metabolismo , Depresión/genética , Depresión/metabolismo , Transportador 2 de Aminoácidos Excitadores/efectos de los fármacos , Transportador 2 de Aminoácidos Excitadores/genética , Humanos , Ketamina/metabolismo , Ketamina/farmacología , Ketamina/uso terapéutico , Ratones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
17.
STAR Protoc ; 3(2): 101445, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35707681

RESUMEN

Here, we present an optimized protocol for generating a mouse model overexpressing human α-synuclein in dopamine (DA) neurons driven by an adeno-associated viral (AAV) vector and for the examination of the benefit of an antisense oligonucleotide (ASO)-based therapy on DA neurotransmission under Parkinson's disease (PD)-like conditions. We describe AAV injection, followed by implantation of an osmotic minipump for ASO delivery and a guide cannula for microdialysis to measure DA release. This protocol can be used to evaluate oligonucleotide-based therapies for PD. For complete details on the use and execution of this protocol, please refer to Alarcón-Arís et al. (2020).


Asunto(s)
Enfermedad de Parkinson , Animales , Modelos Animales de Enfermedad , Dopamina/fisiología , Neuronas Dopaminérgicas , Ratones , Oligonucleótidos , Oligonucleótidos Antisentido/uso terapéutico , Enfermedad de Parkinson/genética
18.
Transl Psychiatry ; 12(1): 79, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210396

RESUMEN

Anxiety and depression affect 35-50% of patients with Parkinson's disease (PD), often precede the onset of motor symptoms, and have a negative impact on their quality of life. Dysfunction of the serotonergic (5-HT) system, which regulates mood and emotional pathways, occurs during the premotor phase of PD and contributes to a variety of non-motor symptoms. Furthermore, α-synuclein (α-Syn) aggregates were identified in raphe nuclei in the early stages of the disease. However, there are very few animal models of PD-related neuropsychiatric disorders. Here, we develop a new mouse model of α-synucleinopathy in the 5-HT system that mimics prominent histopathological and neuropsychiatric features of human PD. We showed that adeno-associated virus (AAV5)-induced overexpression of wild-type human α-Syn (h-α-Syn) in raphe 5-HT neurons triggers progressive accumulation, phosphorylation, and aggregation of h-α-Syn protein in the 5-HT system. Specifically, AAV5-injected mice displayed axonal impairment in the output brain regions of raphe neurons, and deficits in brain-derived neurotrophic factor (BDNF) expression and 5-HT neurotransmission, resulting in a depressive-like phenotype. Intracerebroventricular treatment with an indatraline-conjugated antisense oligonucleotide (IND-ASO) for four weeks induced an effective and safe reduction of h-α-Syn synthesis in 5-HT neurons and its accumulation in the forebrain, alleviating early deficits of 5-HT function and improving the behavioural phenotype. Altogether, our findings show that α-synucleinopathy in 5-HT neurons negatively affects brain circuits that control mood and emotions, resembling the expression of neuropsychiatric symptoms occurring at the onset of PD. Early preservation of 5-HT function by reducing α-Syn synthesis/accumulation may alleviate PD-related depressive symptoms.


Asunto(s)
Serotonina , alfa-Sinucleína , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas/metabolismo , Oligonucleótidos/metabolismo , Oligonucleótidos/farmacología , Fenotipo , Prosencéfalo/metabolismo , Calidad de Vida , Serotonina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacología
19.
Nat Metab ; 4(4): 424-434, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379970

RESUMEN

Preparation for motherhood requires a myriad of physiological and behavioural adjustments throughout gestation to provide an adequate environment for proper embryonic development1. Cravings for highly palatable foods are highly prevalent during pregnancy2 and contribute to the maintenance and development of gestational overweight or obesity3. However, the neurobiology underlying the distinct ingestive behaviours that result from craving specific foods remain unknown. Here we show that mice, similarly to humans, experience gestational food craving-like episodes. These episodes are associated with a brain connectivity reorganization that affects key components of the dopaminergic mesolimbic circuitry, which drives motivated appetitive behaviours and facilitates the perception of rewarding stimuli. Pregnancy engages a dynamic modulation of dopaminergic signalling through neurons expressing dopamine D2 receptors in the nucleus accumbens, which directly modulate food craving-like events. Importantly, persistent maternal food craving-like behaviour has long-lasting effects on the offspring, particularly in males, leading to glucose intolerance, increased body weight and increased susceptibility to develop eating disorders and anxiety-like behaviours during adulthood. Our results reveal the cognitively motivated nature of pregnancy food cravings and advocates for moderating emotional eating during gestation to prevent deterioration of the offspring's neuropsychological and metabolic health.


Asunto(s)
Ansia , Ingestión de Alimentos , Animales , Ansia/fisiología , Dopamina/metabolismo , Femenino , Preferencias Alimentarias/psicología , Masculino , Ratones , Obesidad/metabolismo , Embarazo , Aumento de Peso
20.
Front Mol Biosci ; 9: 887678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406277

RESUMEN

A colloidal synthesis' proof-of-concept based on the Bligh-Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA