Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172566

RESUMEN

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Asunto(s)
Anomalías Múltiples , Anomalías Craneofaciales , Complejos Multiproteicos , Humanos , Endosomas/metabolismo , Transporte de Proteínas , Proteínas/metabolismo , Complejos Multiproteicos/metabolismo
2.
Nat Chem Biol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902458

RESUMEN

Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.

3.
Nat Mater ; 22(6): 786-792, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37217702

RESUMEN

Seeded growth of crystallizable block copolymers and π-stacking molecular amphiphiles in solution using living crystallization-driven self-assembly is an emerging route to fabricate uniform one-dimensional and two-dimensional core-shell micellar nanoparticles of controlled size with a range of potential applications. Although experimental evidence indicates that the crystalline core of these nanomaterials is highly ordered, a direct observation of their crystal lattice has not been successful. Here we report the high-resolution cryo-transmission electron microscopy studies of vitrified solutions of nanofibres made from a crystalline core of poly(ferrocenyldimethylsilane) (PFS) and a corona of polysiloxane grafted with 4-vinylpyridine groups. These studies show that poly(ferrocenyldimethylsilane) chains pack in an 8-nm-diameter core lattice with two-dimensional pseudo-hexagonal symmetry that is coated by a 27 nm 4-vinylpyridine corona with a 3.5 nm distance between each 4-vinylpyridine strand. We combine this structural information with a molecular modelling analysis to propose a detailed molecular model for solvated poly(ferrocenyldimethylsilane)-b-4-vinylpyridine nanofibres.

4.
Nucleic Acids Res ; 49(13): 7665-7679, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34157102

RESUMEN

Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3'CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1's accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.


Asunto(s)
Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Microscopía por Crioelectrón , Células HeLa , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , Nucleósidos/química , Nucleósidos/farmacología , Factores de Terminación de Péptidos/metabolismo , Péptidos/metabolismo , Inhibidores de la Síntesis de la Proteína/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/efectos de los fármacos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo
5.
J Am Chem Soc ; 144(43): 19799-19812, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260789

RESUMEN

Micelleplexes show great promise as effective polymeric delivery systems for nucleic acids. Although studies have shown that spherical micelleplexes can exhibit superior cellular transfection to polyplexes, to date there has been no report on the effects of micelleplex morphology on cellular transfection. In this work, we prepared precision, length-tunable poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC16-b-PDMAEMA131) nanofiber micelleplexes and compared their properties and transfection activity to those of the equivalent nanosphere micelleplexes and polyplexes. We studied the DNA complexation process in detail via a range of techniques including cryo-transmission electron microscopy, atomic force microscopy, dynamic light scattering, and ζ-potential measurements, thereby examining how nanofiber micelleplexes form, as well the key differences that exist compared to nanosphere micelleplexes and polyplexes in terms of DNA loading and colloidal stability. The effects of particle morphology and nanofiber length on the transfection and cell viability of U-87 MG glioblastoma cells with a luciferase plasmid were explored, revealing that short nanofiber micelleplexes (length < ca. 100 nm) were the most effective delivery vehicle examined, outperforming nanosphere micelleplexes, polyplexes, and longer nanofiber micelleplexes as well as the Lipofectamine 2000 control. This study highlights the potential importance of 1D micelleplex morphologies for achieving optimal transfection activity and provides a fundamental platform for the future development of more effective polymeric nucleic acid delivery vehicles.


Asunto(s)
Nanofibras , Ácidos Nucleicos , Micelas , Transfección , Polímeros , ADN
6.
Structure ; 32(3): 342-351.e6, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38198950

RESUMEN

Adenovirus-derived nanoparticles (ADDomer) comprise 60 copies of adenovirus penton base protein (PBP). ADDomer is thermostable, rendering the storage, transport, and deployment of ADDomer-based therapeutics independent of a cold chain. To expand the scope of ADDomers for new applications, we engineered ADDobodies, representing PBP crown domain, genetically separated from PBP multimerization domain. We inserted heterologous sequences into hyper-variable loops, resulting in monomeric, thermostable ADDobodies expressed at high yields in Escherichia coli. The X-ray structure of an ADDobody prototype validated our design. ADDobodies can be used in ribosome display experiments to select a specific binder against a target, with an enrichment factor of ∼104-fold per round. ADDobodies can be re-converted into ADDomers by genetically reconnecting the selected ADDobody with the PBP multimerization domain from a different species, giving rise to a multivalent nanoparticle, called Chimera, confirmed by a 2.2 Å electron cryo-microscopy structure. Chimera comprises 60 binding sites, resulting in ultra-high, picomolar avidity to the target.


Asunto(s)
Ingeniería de Proteínas , Sitios de Unión
7.
Nat Commun ; 15(1): 5967, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013865

RESUMEN

Crosstalk between the actin and microtubule cytoskeletons is important for many cellular processes. Recent studies have shown that microtubules and F-actin can assemble to form a composite structure where F-actin occupies the microtubule lumen. Whether these cytoskeletal hybrids exist in physiological settings and how they are formed is unclear. Here, we show that the short-crossover Class I actin filament previously identified inside microtubules in human HAP1 cells is cofilin-bound F-actin. Lumenal F-actin can be reconstituted in vitro, but cofilin is not essential. Moreover, actin filaments with both cofilin-bound and canonical morphologies reside within human platelet microtubules under physiological conditions. We propose that stress placed upon the microtubule network during motor-driven microtubule looping and sliding may facilitate the incorporation of actin into microtubules.


Asunto(s)
Citoesqueleto de Actina , Actinas , Plaquetas , Microtúbulos , Microtúbulos/metabolismo , Humanos , Citoesqueleto de Actina/metabolismo , Plaquetas/metabolismo , Actinas/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Microscopía por Crioelectrón
8.
PLoS One ; 18(6): e0287294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37347755

RESUMEN

Hemocyanins are multimeric oxygen transport proteins present in the blood of arthropods and molluscs, containing up to 8 oxygen-binding functional units per monomer. In molluscs, hemocyanins are assembled in decamer 'building blocks' formed of 5 dimer 'plates', routinely forming didecamer or higher-order assemblies with d5 or c5 symmetry. Here we describe the cryoEM structures of the didecamer (20-mer) and tridecamer (30-mer) forms of a novel hemocyanin from the slipper limpet Crepidula fornicata (SLH) at 7.0 and 4.7 Å resolution respectively. We show that two decamers assemble in a 'tail-tail' configuration, forming a partially capped cylinder, with an additional decamer adding on in 'head-tail' configuration to make the tridecamer. Analysis of SLH samples shows substantial heterogeneity, suggesting the presence of many higher-order multimers including tetra- and pentadecamers, formed by successive addition of decamers in head-tail configuration. Retrieval of sequence data for a full-length isoform of SLH enabled the use of Alphafold to produce a molecular model of SLH, which indicated the formation of dimer slabs with high similarity to those found in keyhole limpet hemocyanin. The fit of the molecular model to the cryoEM density was excellent, showing an overall structure where the final two functional units of the subunit (FU-g and FU-h) form the partial cap at one end of the decamer, and permitting analysis of the subunit interfaces governing the assembly of tail-tail and head-tail decamer interactions as well as potential sites for N-glycosylation. Our work contributes to the understanding of higher-order oligomer formation in molluscan hemocyanins and demonstrates the utility of Alphafold for building accurate structural models of large oligomeric proteins.


Asunto(s)
Artrópodos , Gastrópodos , Animales , Hemocianinas/metabolismo , Microscopía por Crioelectrón , Moluscos/química , Modelos Moleculares , Artrópodos/metabolismo , Gastrópodos/metabolismo , Polímeros
9.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38075238

RESUMEN

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

10.
Sci Adv ; 8(37): eabp9660, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112680

RESUMEN

Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.

11.
Nat Commun ; 13(1): 222, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017512

RESUMEN

As the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site. We elucidate the structure, function and molecular dynamics of this spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Our results reveal long-range allosteric communication between functional domains that differ in the wild-type and the deletion variant and support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.


Asunto(s)
SARS-CoV-2/química , SARS-CoV-2/genética , Animales , COVID-19/virología , Línea Celular , Microscopía por Crioelectrón , Evolución Molecular , Furina/metabolismo , Humanos , Ácido Linoleico/metabolismo , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo Viral , Internalización del Virus
12.
Sci Adv ; 8(47): eadc9179, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36417532

RESUMEN

As coronavirus disease 2019 (COVID-19) persists, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge, accumulating spike (S) glycoprotein mutations. S receptor binding domain (RBD) comprises a free fatty acid (FFA)-binding pocket. FFA binding stabilizes a locked S conformation, interfering with virus infectivity. We provide evidence that the pocket is conserved in pathogenic ß-coronaviruses (ß-CoVs) infecting humans. SARS-CoV, MERS-CoV, SARS-CoV-2, and VOCs bind the essential FFA linoleic acid (LA), while binding is abolished by one mutation in common cold-causing HCoV-HKU1. In the SARS-CoV S structure, LA stabilizes the locked conformation, while the open, infectious conformation is devoid of LA. Electron tomography of SARS-CoV-2-infected cells reveals that LA treatment inhibits viral replication, resulting in fewer deformed virions. Our results establish FFA binding as a hallmark of pathogenic ß-CoV infection and replication, setting the stage for FFA-based antiviral strategies to overcome COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ácidos Grasos no Esterificados , SARS-CoV-2
13.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32478855

RESUMEN

Microtubules and filamentous (F-) actin engage in complex interactions to drive many cellular processes from subcellular organization to cell division and migration. This is thought to be largely controlled by proteins that interface between the two structurally distinct cytoskeletal components. Here, we use cryo-electron tomography to demonstrate that the microtubule lumen can be occupied by extended segments of F-actin in small molecule-induced, microtubule-based, cellular projections. We uncover an unexpected versatility in cytoskeletal form that may prompt a significant development of our current models of cellular architecture and offer a new experimental approach for the in situ study of microtubule structure and contents.


Asunto(s)
Actinas/metabolismo , Microscopía por Crioelectrón/métodos , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , División Celular/fisiología , Línea Celular , Citoesqueleto/metabolismo , Humanos
14.
Science ; 370(6517): 725-730, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958580

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a global crisis. Key to SARS-CoV-2 therapeutic development is unraveling the mechanisms that drive high infectivity, broad tissue tropism, and severe pathology. Our 2.85-angstrom cryo-electron microscopy structure of SARS-CoV-2 spike (S) glycoprotein reveals that the receptor binding domains tightly bind the essential free fatty acid linoleic acid (LA) in three composite binding pockets. A similar pocket also appears to be present in the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). LA binding stabilizes a locked S conformation, resulting in reduced angiotensin-converting enzyme 2 (ACE2) interaction in vitro. In human cells, LA supplementation synergizes with the COVID-19 drug remdesivir, suppressing SARS-CoV-2 replication. Our structure directly links LA and S, setting the stage for intervention strategies that target LA binding by SARS-CoV-2.


Asunto(s)
Ácido Linoleico/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus , Sitios de Unión , Chlorocebus aethiops , Microscopía por Crioelectrón , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio , Modelos Moleculares , Peptidil-Dipeptidasa A/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA