Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clean Prod ; 215: 63-74, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31007413

RESUMEN

Impacts associated with land use are increasingly recognized as important aspects to consider when conducting Life Cycle Assessment (LCA). Across the existing models accounting for land use activities in life cycle impact assessment, a balance is yet to be found between complexity and comprehensiveness on one hand, and applicability on the other hand. This work builds on the LANd use indicator value CAlculation (LANCA®) model, assessing the impacts of land use activities on five soil properties, and aims at developing an aggregated index to improve its applicability. First a statistical analysis is conducted, leading to the shortlisting of the four most significant soil quality indicators. Then two options for aggregating the selected indicators are presented: the soil quality index (SQI), based on linear aggregation, and the normalisation-based soil quality index (NSQI), where the aggregation process involves normalisation integrated into the characterisation step. Country-specific and global average characterisation factors (CFs) are calculated for 57 land use types considering both land occupation and land transformation interventions with the two suggested approaches. The two indices present similar ranking of land use types but the relative contribution of the separate indicators to the aggregated index varies according to the approach adopted. The differences between the aggregation approaches suggested are discussed, together with the limitations related to both the LANCA® model and the aggregation approaches. This work represents a first step towards the widespread application of a comprehensive and robust land use model at midpoint level in LCA. Finally, a number of recommendations for the future development of the LANCA® model and of the related soil quality models are provided.

2.
Adv Biochem Eng Biotechnol ; 173: 233-254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31814053

RESUMEN

One of the many promises of biotechnology is that it allows societies to move away from a fossil-based industry toward a bio-based industry, with positive implications for anthropogenic climate change and resource dependency. The provision of biomass from agriculture or forestry is, however, linked to specific environmental implications that cannot be disregarded in an informed discussion about the role of biotechnology in the twenty-first century. In this chapter, we discuss landuse-related effects of biomass provision such as landscape homogenization, eutrophication, erosion, biodiversity, and others. We also discuss how these effects are represented in Life Cycle Assessment, which is a powerful tool for product sustainability evaluation.


Asunto(s)
Agricultura , Biodiversidad , Biotecnología , Cambio Climático , Conservación de los Recursos Naturales , Industrias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA