Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytometry B Clin Cytom ; 106(2): 99-112, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37997558

RESUMEN

Common variable immunodeficiency disorder (CVID) is the most common form of primary antibody immunodeficiency. Due to low antibody levels, CVID patients receive intravenous or subcutaneous immunoglobulin replacement therapy as treatment. CVID is associated with the chronic activation of granulocytes, including an increased percentage of low-density neutrophils (LDNs). In this study, we examined changes in the percentage of LDNs and the expression of their surface markers in 25 patients with CVID and 27 healthy donors (HD) after in vitro stimulation of whole blood using IVIg. An oxidative burst assay was used to assess the functionality of LDNs. CVID patients had increased both relative and absolute LDN counts with a higher proportion of mLDNs compared to iLDNs, distinguished based on the expression of CD10 and CD16. Immature LDNs in the CVID and HD groups had significantly reduced oxidative burst capacity compared to mature LDNs. Interestingly we observed reduced oxidative burst capacity, reduced expression of CD10 after stimulation of WB, and higher expression of PD-L1 in mature LDNs in CVID patients compared to HD cells. Our data indicate that that the functional characteristics of LDNs are closely linked to their developmental stage. The observed reduction in oxidative burst capacity in mLDNs in CVID patients could contribute to an increased susceptibility to recurrent bacterial infections among CVID patients.


Asunto(s)
Inmunodeficiencia Variable Común , Neutrófilos , Humanos , Estallido Respiratorio , Citometría de Flujo , Fenotipo
2.
Matrix Biol ; 125: 12-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944712

RESUMEN

Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-ß signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-ß signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-ß-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-ß signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.


Asunto(s)
Neoplasias de la Próstata , Factor de Crecimiento Transformador beta , Masculino , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata/patología , Matriz Extracelular/metabolismo , Próstata/metabolismo , Línea Celular Tumoral
3.
Heliyon ; 10(4): e25938, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404862

RESUMEN

COVID-19 manifestation is associated with a strong immune system activation leading to inflammation and subsequently affecting the cardiovascular system. The objective of the study was to reveal possible interconnection between prolongated inflammation and the development or exacerbation of long-term cardiovascular complications after COVID-19. We investigated correlations between humoral and cellular immune system markers together with markers of cardiovascular inflammation/dysfunction during COVID-19 onset and subsequent recovery. We analyzed 22 hospitalized patients with severe COVID-19 within three timepoints (acute, 1 and 6 months after COVID-19) in order to track the impact of COVID-19 on the long-term decline of the cardiovascular system fitness and eventual development of CVDs. Among the cytokines dysregulated during COVID-19 changes, we showed significant correlations of IL-18 as a key driver of several pathophysiological changes with markers of cardiovascular inflammation/dysfunction. Our findings established novel immune-related markers, which can be used for the stratification of patients at high risk of CVDs for further therapy.

4.
Methods Mol Biol ; 2700: 271-284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603187

RESUMEN

Organoid cultures may express several types of pattern-recognition receptors and in particular toll-like receptors, representing an extremely efficient and innovative system to understand how pathogen-associated molecular patterns exposure may affect the immunity, the growth, or differentiation of complex tissues. Here, we describe how to generate lung organoids from human-induced pluripotent stem cells. Three-dimensional (3D) cultures are then stimulated with different toll-like receptor ligands derived from fungi or with Aspergillus fumigatus. RNA sequencing may be performed upon organoid cultures to understand host-pathogen innate immune interactions.


Asunto(s)
Aspergillus fumigatus , Hongos , Humanos , Diferenciación Celular , Interacciones Huésped-Patógeno , Organoides
5.
Front Cell Dev Biol ; 10: 899368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912110

RESUMEN

Organoids are complex multicellular three-dimensional (3D) in vitro models that are designed to allow accurate studies of the molecular processes and pathologies of human organs. Organoids can be derived from a variety of cell types, such as human primary progenitor cells, pluripotent stem cells, or tumor-derived cells and can be co-cultured with immune or microbial cells to further mimic the tissue niche. Here, we focus on the development of 3D lung organoids and their use as disease models and drug screening tools. We introduce the various experimental approaches used to model complex human diseases and analyze their advantages and disadvantages. We also discuss validation of the organoids and their physiological relevance to the study of lung diseases. Furthermore, we summarize the current use of lung organoids as models of host-pathogen interactions and human lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or SARS-CoV-2 infection. Moreover, we discuss the use of lung organoids derived from tumor cells as lung cancer models and their application in personalized cancer medicine research. Finally, we outline the future of research in the field of human induced pluripotent stem cell-derived organoids.

6.
Antioxidants (Basel) ; 10(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067364

RESUMEN

Hydrogen sulfide is a toxic compound that can affect various groups of water microorganisms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as well as the conditions for isolation and cultivation of these microorganisms will be presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA