RESUMEN
Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.
Asunto(s)
Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Aminoacil-ARNt Sintetasas/metabolismo , Antituberculosos/farmacología , Teorema de Bayes , Evolución Biológica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , ARN Guía de Kinetoplastida/genéticaRESUMEN
Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.
Asunto(s)
Proteínas Bacterianas , Farmacorresistencia Bacteriana , Evolución Molecular , Aptitud Genética , Mycobacterium tuberculosis , Rifampin , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia Conservada , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genómica , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Rifampin/farmacología , Rifampin/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiologíaRESUMEN
The link between bread and wheat products and celiac disease was first recognized by Willem Dicke in the 1930s through clinical observations of his child patients. The role of gluten as the toxic factor was then proven by Drs. Dicke, Weijers and Van de Kamer in brilliant and prolonged studies in a small number of children. The Dutch Coeliac Society helped us interview surviving child subjects of these studies. Vignettes of their lives, difficulties and memories are presented in their own words. These testimonies emphasize the central role clinical observation has had in our understanding of celiac disease pathophysiology.
Asunto(s)
Enfermedad Celíaca , Niño , Humanos , Pan , Enfermedad Celíaca/diagnóstico , Glútenes , TriticumRESUMEN
Isolated congenital asplenia (ICA) is the only known human developmental defect exclusively affecting a lymphoid organ. In 2013, we showed that private deleterious mutations in the protein-coding region of RPSA, encoding ribosomal protein SA, caused ICA by haploinsufficiency with complete penetrance. We reported seven heterozygous protein-coding mutations in 8 of the 23 kindreds studied, including 6 of the 8 multiplex kindreds. We have since enrolled 33 new kindreds, 5 of which are multiplex. We describe here 11 new heterozygous ICA-causing RPSA protein-coding mutations, and the first two mutations in the 5'-UTR of this gene, which disrupt mRNA splicing. Overall, 40 of the 73 ICA patients (55%) and 23 of the 56 kindreds (41%) carry mutations located in translated or untranslated exons of RPSA. Eleven of the 43 kindreds affected by sporadic disease (26%) carry RPSA mutations, whereas 12 of the 13 multiplex kindreds (92%) carry RPSA mutations. We also report that 6 of 18 (33%) protein-coding mutations and the two (100%) 5'-UTR mutations display incomplete penetrance. Three mutations were identified in two independent kindreds, due to a hotspot or a founder effect. Finally, RPSA ICA-causing mutations were demonstrated to be de novo in 7 of the 23 probands. Mutations in RPSA exons can affect the translated or untranslated regions and can underlie ICA with complete or incomplete penetrance.
Asunto(s)
Exones , Síndromes de Inmunodeficiencia/genética , Mutación , Penetrancia , Biosíntesis de Proteínas/genética , Empalme del ARN/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Bazo/anomalías , Regiones no Traducidas 5' , Femenino , Efecto Fundador , Heterocigoto , Humanos , Síndromes de Inmunodeficiencia/metabolismo , Masculino , Enfermedades de Inmunodeficiencia Primaria , Receptores de Laminina/biosíntesis , Proteínas Ribosómicas/biosíntesis , Bazo/metabolismoRESUMEN
BACKGROUND: The correlation between different methods for the detection of pneumococcal polysaccharide vaccine (PPV) responses to diagnose specific polysaccharide antibody deficiency (SAD) is poor and the criteria for defining a normal response lack consensus. We previously proposed fifth percentile (p5) values of PPV responses as a new cutoff for SAD. OBJECTIVE: To analyze the association of SAD (determined by either World Health Organization (WHO)-standardized ELISA or multiplex bead-based assay) with abnormal response to Salmonella (S.) typhi Vi vaccination in a cohort of patients with recurrent infections. METHODS: Ninety-four patients with a clinical history suggestive of antibody deficiency received PPV and S. typhi Vi vaccines. Polysaccharide responses to either 3 or 18 pneumococcal serotypes were measured by either the WHO ELISA or a multiplex in-house bead-based assay. Anti-S. typhi Vi IgG were measured by a commercial ELISA kit. Allohemagglutinins (AHA) were measured by agglutination method. RESULTS: Based on the American Academy of Allergy, Asthma and Immunology (AAAAI) criteria for WHO ELISA, 18/94 patients were diagnosed with SAD and 22/93 based on serotype-specific p5 cutoffs for bead-based assay. The association between the two methods was significant, with 10 subjects showing abnormal response according to both techniques. Abnormal response to S. typhi Vi vaccination was found in 7 patients, 6 of which had SAD. No correlation was found between polysaccharide response and AHA, age, or clinical phenotype. CONCLUSION: The lack of evidence-based gold standards for the diagnosis of SAD represents a challenge in clinical practice. In our cohort, we confirmed the insufficient correlation between different methods of specific PPV response measurement, and showed that the S. typhi Vi response was not contributive. Caution in the interpretation of results is warranted until more reliable diagnostic methods can be validated.
Asunto(s)
Anticuerpos Antibacterianos/inmunología , Vacunas Neumococicas/inmunología , Polisacáridos Bacterianos/inmunología , Enfermedades de Inmunodeficiencia Primaria/inmunología , Salmonella typhi/inmunología , Adolescente , Adulto , Niño , Preescolar , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Serogrupo , Streptococcus pneumoniae/inmunología , Vacunas Tifoides-Paratifoides/inmunología , Vacunación/métodos , Adulto JovenRESUMEN
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αß T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Asunto(s)
Enfermedades Transmisibles/genética , Enfermedades Genéticas Congénitas/inmunología , Inmunidad Innata/genética , Leucocitos/fisiología , Mutación/genética , Animales , Enfermedades Transmisibles/inmunología , Humanos , Interferones/metabolismo , FN-kappa B/genética , Fagocitosis , Transducción de Señal , Receptores Toll-Like/genéticaRESUMEN
DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils.
Asunto(s)
Linfocitos B/inmunología , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/genética , Células Asesinas Naturales/inmunología , Neutrófilos/inmunología , Eliminación de Secuencia/genética , Inmunodeficiencia Combinada Grave/genética , Empalme Alternativo/genética , Humanos , Estrés Oxidativo , LinajeRESUMEN
Deficiency of adenosine deaminase 2 (DADA2) is caused by biallelic deleterious mutations in CECR1 DADA2 results in variable autoinflammation and vasculopathy (recurrent fevers, livedo reticularis, polyarteritis nodosa, lacunar ischemic strokes, and intracranial hemorrhages), immunodeficiency and bone marrow failure. Tumor necrosis factor-α blockade is the treatment of choice for the autoinflammation and vascular manifestations. Hematopoietic stem cell transplantation (HSCT) represents a potential definitive treatment. We present a cohort of 14 patients from 6 countries who received HSCT for DADA2. Indication for HSCT was bone marrow dysfunction or immunodeficiency. Six of 14 patients had vasculitis pre-HSCT. The median age at HSCT was 7.5 years. Conditioning regimens were myeloablative (9) and reduced intensity (5). Donors were HLA-matched sibling (n = 1), HLA-matched unrelated (n = 9), HLA-mismatched unrelated (n = 3), and HLA haploidentical sibling (n = 1). All patients are alive and well with no new vascular events and resolution of hematological and immunological phenotype at a median follow-up of 18 months (range, 5 months to 13 years). Plasma ADA2 enzyme activity normalized in those tested post-HSCT (7/7), as early as day +14 (myeloid engraftment). Post-HSCT hematological autoimmunity (cytopenias) was reported in 4 patients, acute graft-versus-host disease grade 1 in 2, grade 2 in 3, and grade 3-4 in 1, and moderate chronic graft-versus-host disease in 1 patient. In conclusion, in 14 patients, HSCT was an effective and definitive treatment of DADA2.
Asunto(s)
Adenosina Desaminasa/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Adenosina Desaminasa/sangre , Adenosina Desaminasa/metabolismo , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Síndromes de Inmunodeficiencia/enzimología , Lactante , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Fenotipo , Acondicionamiento Pretrasplante/métodosRESUMEN
BACKGROUND: The reason why Cystic Fibrosis (CF) is the most common fatal genetic disease among Caucasians has been incompletely studied. We aimed at deepening the hypothesis that CF carriers have a relative protection against Mycobacterium tuberculosis (Mtb) infection. METHODS: Applying spatial epidemiology, we studied the link between CF carriership rate and tuberculosis (TB) incidence in Brazil. We corrected for 5 potential environmental and 2 immunological confounders in this relation: monthly income, sanitary provisions, literacy rates, racial composition and population density along with AIDS incidence rates and diabetes mellitus type 2. Smoking data were incomplete and not available for analysis. RESULTS: A significant, negative correlation between CF carriership rate and TB incidence, independent of any of the seven confounders was found. CONCLUSION: We provide exploratory support for the hypothesis that carrying a single CFTR mutation arms against Mtb infections.
Asunto(s)
Fibrosis Quística/genética , Heterocigoto , Tuberculosis/epidemiología , Brasil/epidemiología , Fibrosis Quística/epidemiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Masculino , Mutación , Tuberculosis/genética , Población Blanca/genéticaRESUMEN
RATIONALE: After repeated cycles of lung infection and inflammation, patients with cystic fibrosis (CF) evolve to respiratory insufficiency. Although histology and imaging have provided descriptive information, a thorough morphometric analysis of end-stage CF lung disease is lacking. OBJECTIVES: To quantify the involvement of small and large airways in end-stage CF. METHODS: Multidetector computed tomography (MDCT) and micro-CT were applied to 11 air-inflated CF explanted lungs and 7 control lungs to measure, count, and describe the airway and parenchymal abnormalities in end-stage CF lungs. Selected abnormalities were further investigated with thin section histology. MEASUREMENTS AND MAIN RESULTS: On MDCT, CF explanted lungs showed an increased median (interquartile range) number (631 [511-710] vs. 344 [277-349]; P = 0.003) and size of visible airways (cumulative airway diameter 217 cm [209-250] vs. 91 cm [80-105]; P < 0.001) compared with controls. Airway obstruction was seen, starting from generation 6 and increasing to 40 to 50% of airways from generation 9 onward. Micro-CT showed that the total number of terminal bronchioles was decreased (2.9/ml [2.6-4.4] vs. 5.3/ml [4.8-5.7]; P < 0.001); 49% were obstructed, and the cross-sectional area of the open terminal bronchioles was reduced (0.093 mm(2) [0.084-0.123] vs. 0.179 mm(2) [0.140-0.196]; P < 0.001). On micro-CT, 41% of the obstructed airways reopened more distally. This remodeling was confirmed on histological analysis. Parenchymal changes were also seen, mostly in a patchy and peribronchiolar distribution. CONCLUSIONS: Extensive changes of dilatation and obstruction in nearly all airway generations were observed in end-stage CF lung disease.
Asunto(s)
Obstrucción de las Vías Aéreas/diagnóstico por imagen , Remodelación de las Vías Aéreas (Respiratorias) , Fibrosis Quística/diagnóstico por imagen , Trasplante de Pulmón , Pulmón/diagnóstico por imagen , Adulto , Anciano , Obstrucción de las Vías Aéreas/fisiopatología , Bronquios , Bronquiolos , Estudios de Casos y Controles , Fibrosis Quística/fisiopatología , Fibrosis Quística/cirugía , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Flujo Espiratorio Medio Máximo , Persona de Mediana Edad , Tomografía Computarizada Multidetector , Tamaño de los Órganos , Pletismografía , Neumonectomía , Volumen Residual , Espirometría , Capacidad Pulmonar Total , Capacidad Vital , Microtomografía por Rayos X , Adulto JovenRESUMEN
The advent of next-generation sequencing (NGS) in 2010 has transformed medicine, particularly the growing field of inborn errors of immunity. NGS has facilitated the discovery of novel disease-causing genes and the genetic diagnosis of patients with monogenic inborn errors of immunity. Whole-exome sequencing (WES) is presently the most cost-effective approach for research and diagnostics, although whole-genome sequencing offers several advantages. The scientific or diagnostic challenge consists in selecting 1 or 2 candidate variants among thousands of NGS calls. Variant- and gene-level computational methods, as well as immunologic hypotheses, can help narrow down this genome-wide search. The key to success is a well-informed genetic hypothesis on 3 key aspects: mode of inheritance, clinical penetrance, and genetic heterogeneity of the condition. This determines the search strategy and selection criteria for candidate alleles. Subsequent functional validation of the disease-causing effect of the candidate variant is critical. Even the most up-to-date dry lab cannot clinch this validation without a seasoned wet lab. The multifariousness of variations entails an experimental rigor even greater than traditional Sanger sequencing-based approaches in order not to assign a condition to an irrelevant variant. Finding the needle in the haystack takes patience, prudence, and discernment.
Asunto(s)
Exoma/genética , Enfermedades Genéticas Congénitas , Genoma Humano/genética , Síndromes de Inmunodeficiencia/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , HumanosRESUMEN
After 25 years of intensive search, there is not yet a cure for cystic fibrosis (CF). However, the quest has led to major breakthroughs in understanding the basic disease defect and defining strategies to correct it. The first cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been introduced in clinic. Some show an impressive clinical benefit, like the potentiator ivacaftor for the 4% of patients with a class III defect. Others offer at present only a limited benefit, like the combination corrector lumacaftor plus potentiator ivacaftor for subjects homozygous for F508del. These findings prove that the basic defect in CF can be modified and hold the promise that one day CF will no longer be a life-shortening disease. CONCLUSION: This review updates the clinician on recent achievements as well as on the CF research pipeline. WHAT IS KNOWN: Cystic fibrosis (CF) is a common and life-shortening disease that currently cannot be cured. However, for each of the six CF mutation classes, disease-modifying drugs are under way. WHAT IS NEW: This review is a concise update for the clinician on new drugs that reached the CF clinical pipeline. The research strategies in CF have become a paradigm for clinical trials in other inherited diseases.
Asunto(s)
Fibrosis Quística/terapia , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Terapia Genética , Humanos , Biosíntesis de Proteínas , ARN Mensajero/genéticaRESUMEN
OBJECTIVES: The aim of this study was to assess the feasibility of fetal tracheal injection in the late-gestational pig to target the airways. METHODS: Following laparotomy and hysterotomy, fetoscopy was performed in pregnant sows to access the fetal trachea. Two volumes of fluospheres were injected (1 and 3 mL). Fluosphere distribution to the different lung lobes was investigated by microscopy. Possible fetal airway injury, caused by the surgical procedure or intratracheal injection, was investigated. Lung morphology and fetal lung volumes were calculated by micro computed tomography (µCT). RESULTS: Intratracheal administration was successfully performed in 20/21 fetuses. Analysis by confocal microscopy demonstrated that 3 mL, and not 1 mL, most efficiently targeted all lung lobes. On high-resolution µCT, total airway volume was estimated at 2.9 mL; strengthening that 3 mL is appropriate to target all lung lobes. No procedural damage was evidenced in the lungs or trachea. CONCLUSIONS: Intratracheal injection of nanoparticles is feasible in the pregnant pig and does not cause procedural lung damage. Using an injection volume of 3 mL, all lung lobes were efficiently targeted. This nanoparticle delivery model to fetal airways opens perspectives for therapeutic interventions. © 2016 John Wiley & Sons, Ltd.
Asunto(s)
Fetoscopía , Colorantes Fluorescentes/administración & dosificación , Lesión Pulmonar/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Modelos Anatómicos , Nanopartículas/administración & dosificación , Tráquea , Animales , Femenino , Colorantes Fluorescentes/efectos adversos , Inyecciones , Pulmón/patología , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Microscopía Confocal , Nanopartículas/efectos adversos , Embarazo , Sus scrofa , Porcinos , Microtomografía por Rayos XRESUMEN
Mycobacterium tuberculosis remains the most common infectious killer worldwide despite decades of antitubercular drug development. Effectively controlling the tuberculosis (TB) pandemic will require innovation in drug discovery. In this review, we provide a brief overview of the two main approaches to discovering new TB drugs-phenotypic screens and target-based drug discovery-and outline some of the limitations of each method. We then explore recent advances in genetic tools that aim to overcome some of these limitations. In particular, we highlight a novel metric to prioritize essential targets, termed vulnerability. Stratifying targets based on their vulnerability presents new opportunities for future target-based drug discovery campaigns.
Asunto(s)
Antituberculosos , Descubrimiento de Drogas , Mycobacterium tuberculosis , Tuberculosis , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendenciasRESUMEN
Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. The conserved whiB7 stress response reduces the effectiveness of antibiotic therapy by activating several intrinsic antibiotic resistance mechanisms. Despite our comprehensive biochemical understanding of WhiB7, the complex set of signals that induce whiB7 expression remain less clear. We employed a reporter-based, genome-wide CRISPRi epistasis screen to identify a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 expression. We show that whiB7 expression is determined by the amino acid composition of the 5' regulatory uORF, thereby allowing whiB7 to sense amino acid starvation. Although deprivation of many amino acids can induce whiB7, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. These findings describe a metabolic function for whiB7 and help explain its evolutionary conservation across mycobacterial species occupying diverse ecological niches.
Asunto(s)
Mycobacterium tuberculosis , Mycobacterium , Factores de Transcripción/metabolismo , Alanina/genética , Alanina/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium/genética , Mycobacterium/metabolismo , Farmacorresistencia Microbiana , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/metabolismoRESUMEN
A persistent left superior vena cava (PLSVC) is a rare and usually unnoticed congenital anomaly. However, clinicians must be conscious of its existence as a PLSVC can be associated with other anomalies of cardiovenous morphology with significant clinical implications for transvenous procedures. We report a case of a double superior vena cava with absent innominate vein found during catheterization for cardiac resynchronization pacemaker therapy implantation (CRT-P). We also describe a technique used for successful positioning of the leads into the right atrium and right ventricle.
Asunto(s)
Bloqueo Atrioventricular/terapia , Cateterismo Venoso Central/métodos , Marcapaso Artificial , Vena Cava Superior/anomalías , Bloqueo Atrioventricular/fisiopatología , Electrocardiografía , Femenino , Humanos , Persona de Mediana EdadRESUMEN
Halogenated platinum salts are known respiratory sensitizers in the workplace, and occupational exposure to platinum via the respiratory system and skin has been reported. The aim of this study was to compare the permeability and skin retention of potassium hexachloroplatinate to previously published data of potassium tetrachloroplatinate. Experiments were performed using female Caucasian skin and Franz diffusion cells with the application of 0.3 mg Pt/mL in the donor solution for 24-h. After 8-h of exposure, 1.87 ng/cm2 of Pt was detected in the receptor solution with exposure to potassium hexachloroplatinate, whereas 0.47 ng/cm2 was detected with exposure to potassium tetrachloroplatinate. After 24-h of exposure the Pt retention in the skin was 1861.60 ng/cm2 and 1486.32 ng/cm2 with exposure to potassium hexa- and tetrachloroplatinate respectively. The faster rate of Pt permeation from exposure to potassium hexachloroplatinate was confirmed by the flux and permeability coefficient values. The results indicate a higher permeability and skin retention of Pt when exposed to potassium hexachloroplatinate, confirming a higher risk associated with occupational exposure to this platinum compound relative to potassium tetrachloroplatinate.
Asunto(s)
Platino (Metal) , Piel , Femenino , Humanos , Platino (Metal)/toxicidad , Compuestos de Platino , ClorurosRESUMEN
Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. These bacteria are highly intrinsically drug resistant, making infections challenging to treat. The conserved whiB7 stress response is a key contributor to mycobacterial intrinsic drug resistance. Although we have a comprehensive structural and biochemical understanding of WhiB7, the complex set of signals that activate whiB7 expression remain less clear. It is believed that whiB7 expression is triggered by translational stalling in an upstream open reading frame (uORF) within the whiB7 5' leader, leading to antitermination and transcription into the downstream whiB7 ORF. To define the signals that activate whiB7, we employed a genome-wide CRISPRi epistasis screen and identified a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 activation. Many of these genes encode amino acid biosynthetic enzymes, tRNAs, and tRNA synthetases, consistent with the proposed mechanism for whiB7 activation by translational stalling in the uORF. We show that the ability of the whiB7 5' regulatory region to sense amino acid starvation is determined by the coding sequence of the uORF. The uORF shows considerable sequence variation among different mycobacterial species, but it is universally and specifically enriched for alanine. Providing a potential rationalization for this enrichment, we find that while deprivation of many amino acids can activate whiB7 expression, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. Our results provide a holistic understanding of the biological pathways that influence whiB7 activation and reveal an extended role for the whiB7 pathway in mycobacterial physiology, beyond its canonical function in antibiotic resistance. These results have important implications for the design of combination drug treatments to avoid whiB7 activation, as well as help explain the conservation of this stress response across a wide range of pathogenic and environmental mycobacteria.