Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443210

RESUMEN

Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edición Génica/métodos , Marcación de Gen/métodos , Transportadoras de Casetes de Unión a ATP/genética , Animales , Animales Modificados Genéticamente , Línea Celular , Células Cultivadas , Codón de Terminación , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Femenino , Genoma , Células Germinativas , Masculino , Proteínas de Microfilamentos/genética , Recombinación Genética
2.
Proc Natl Acad Sci U S A ; 117(1): 464-471, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31852821

RESUMEN

Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, we identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. We demonstrate that Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and that Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, our study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation.


Asunto(s)
Adenosina Desaminasa/metabolismo , Proteínas de Drosophila/metabolismo , Enterocitos/fisiología , Células Madre Multipotentes/fisiología , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo , Drosophila , Proteínas de Drosophila/genética , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/genética , Interferencia de ARN , Receptores Purinérgicos P1/genética
3.
Development ; 142(3): 597-606, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25605786

RESUMEN

Screens in mosaic Drosophila tissues that use chemical mutagenesis have identified many regulators of growth and patterning. Many of the mutant phenotypes observed were contingent upon the presence of both wild-type and mutant cells in the same tissue. More recently, large collections of RNAi lines or cDNAs expressed under Gal4/UAS control have been used to alter gene expression uniformly in specific tissues. However, these newer approaches are not easily combined with the efficient generation of genetic mosaics. The CoinFLP system described here enables mosaic screens in the context of gene knockdown or overexpression by automatically generating a reliable ratio of mutant to wild-type tissue in a developmentally controlled manner. CoinFLP-Gal4 generates mosaic tissues composed of clones of which only a subset expresses Gal4. CoinFLP-LexGAD/Gal4 generates tissues composed of clones that express either Gal4 or LexGAD, thus allowing the study of interactions between different types of genetically manipulated cells. By combining CoinFLP-LexGAD/Gal4 with the split-GFP system GRASP, boundaries between genetically distinct cell populations can be visualized at high resolution.


Asunto(s)
Drosophila/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Mosaicismo , Animales , Cruzamientos Genéticos , Proteínas de Drosophila/metabolismo , Ojo/anatomía & histología , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Procesamiento de Imagen Asistido por Computador , Discos Imaginales/anatomía & histología , Inmunohistoquímica , Microscopía Confocal , Factores de Transcripción/metabolismo , Alas de Animales/anatomía & histología
4.
PLoS Genet ; 9(7): e1003650, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935514

RESUMEN

In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908) , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF) tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Morfogénesis , Conductos Pancreáticos/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-met/genética , Transducción de Señal , Animales , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación Missense , Conductos Pancreáticos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-met/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
5.
bioRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37645802

RESUMEN

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA-system or QF-system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterizsed GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue-specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.

6.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569007

RESUMEN

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.


In order for researchers to understand how organisms develop and function, they often switch specific genes on or off in certain tissues or at selected times. This can be achieved using genetic tools called binary expression systems. In the fruit fly ­ a popular organism for studying biological processes ­ the most common is the GAL4/UAS system. In this system, a protein called GAL4 is expressed in a specific organ or tissue where it activates a UAS element ­ a genetic sequence that is inserted in front of the gene that is to be switched on. This can also include genes inserted into the fruit fly encoding fluorescent proteins or stretches of DNA coding for factors that can silence specific genes. For example, fruit flies expressing GAL4 protein specifically in nerve cells and a UAS element in front of a gene for a fluorescent protein will display fluorescent nerve cells, which can then be examined using fluorescence microscopy. Studying how organs communicate with one other can require controlled expression of multiple genes at the same time. In fruit flies, other binary expression systems that are analogous to the GAL4/UAS system (known as LexA/LexAop and QF/QUAS) can be used in tandem. For example, to study gut-brain communication, the GAL4/UAS system might be used to switch on the gene for an insulin-like protein in the gut, with one of the other systems controlling the expression of its corresponding receptor in the brain. However, these experiments are currently difficult because, while there are thousands of GAL4/UAS genetic lines, there are only a few LexA/LexAop and QF/QUAS genetic lines. To address this lack of resources, Zirin et al. produced a range of genetically engineered fruit flies containing the LexA/LexAop and QF/QUAS binary expression systems. The flies expressed LexA or QF in each of the major fly organs, including the brain, heart, muscles, and gut. A fluorescent reporter gene linked to the LexAop or QUAS elements, respectively, was then used to test the specificity to single organs and compare the different systems. In some organs the LexA/LexAop system was more reliable than the QF/QUAS system. However, both systems could be successfully combined with genetic elements to switch on a fluorescent reporter gene or switch off a gene of interest in the intended organ. The resources developed by Zirin et al. expand the toolkit for studying fruit fly biology. In future, it will be important to understand the differences between GAL4, LexA and QF systems, and to increase the number of fruit fly lines containing the newer binary expression systems.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expresión Génica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animales Modificados Genéticamente/metabolismo
7.
Cell Genom ; 4(3): 100519, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38484704

RESUMEN

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Vectores Genéticos/genética
8.
Dev Biol ; 368(2): 358-69, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22683826

RESUMEN

The survival and growth of individual cells in a tissue can be nonautonomously regulated by the properties of adjacent cells. In mosaic Drosophila imaginal discs, for example, wild-type cells induce the elimination of adjacent slow-growing Minute cells by apoptosis, while, conversely, certain types of faster-growing cells are able to eliminate adjacent wild-type cells. This process, known as cell competition, represents one example of a diverse group of phenomena in which short-range heterotypic interactions result in the selective elimination of one type of cell by another. The mechanisms that designate "winner" and "loser" genotypes in these processes are not known. Here we show that apoptosis is observed preferentially at boundaries that separate populations of cells that express different levels of the transmembrane protein Crumbs (Crb). Cells that express higher levels of Crb tend to be eliminated when they are near cells that express lower levels of Crb. We also observe distortions in the structure of epithelia on either side of boundaries between populations of cells that differ in Crb expression. Thus, while previous studies have focused mostly on the cell autonomous functions of Crb, we show that Crb can regulate cell survival and tissue morphology nonautonomously. Moreover, we find that the extracellular domain (ECD) of Crb, which seems to be dispensable for some of the other characterised functions of Crb, is required to elicit the nonautonomous effects on cell survival. The ECD can also regulate the subcellular localisation of Hippo pathway components, and possibly other proteins, in adjacent cells and may therefore directly mediate these effects. Several genetic lesions alter Crb levels, including loss-of-function mutations in hyperplastic tumour suppressors in the Hippo-Salvador-Warts pathway and in neoplastic tumour suppressor genes, such as scribble. Thus, Crb may be part of a "surveillance mechanism" that is responsible for the cell death that is observed at the boundaries of mutant clones in these cases.


Asunto(s)
Apoptosis/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/fisiología , Animales , Apoptosis/genética , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/citología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/citología , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
9.
Cell Rep ; 42(11): 113311, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37889754

RESUMEN

Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.


Asunto(s)
Drosophila melanogaster , Péptidos , Animales , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Péptidos/metabolismo , Genoma , Sistemas de Lectura Abierta/genética
10.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961518

RESUMEN

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly-described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.

11.
Methods Mol Biol ; 2540: 113-134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980575

RESUMEN

Editing the Drosophila genome is incredibly useful for gene functional analysis. However, compared to gene knockouts, precise gene editing is difficult to achieve. Prime editing, a recently described CRISPR/Cas9-based technique, has the potential to make precise editing simpler and faster, and produce less errors than traditional methods. Initially described in mammalian cells, prime editing is functional in Drosophila somatic and germ cells. Here, we outline steps to design, generate, and express prime editing components in transgenic flies. Furthermore, we highlight a crossing scheme to produce edited fly stocks in less than 3 months.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Drosophila/genética , Edición Génica/métodos , Genoma de los Insectos , Mamíferos/genética
12.
Elife ; 112022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346220

RESUMEN

Naturally produced peptides (<100 amino acids) are important regulators of physiology, development, and metabolism. Recent studies have predicted that thousands of peptides may be translated from transcripts containing small open-reading frames (smORFs). Here, we describe two peptides in Drosophila encoded by conserved smORFs, Sloth1 and Sloth2. These peptides are translated from the same bicistronic transcript and share sequence similarities, suggesting that they encode paralogs. Yet, Sloth1 and Sloth2 are not functionally redundant, and loss of either peptide causes animal lethality, reduced neuronal function, impaired mitochondrial function, and neurodegeneration. We provide evidence that Sloth1/2 are highly expressed in neurons, imported to mitochondria, and regulate mitochondrial complex III assembly. These results suggest that phenotypic analysis of smORF genes in Drosophila can provide a wealth of information on the biological functions of this poorly characterized class of genes.


Asunto(s)
Drosophila , Complejo III de Transporte de Electrones , Animales , Drosophila/genética , Complejo III de Transporte de Electrones/genética , Sistemas de Lectura Abierta , Péptidos/genética , Péptidos/química , Neuronas
13.
Wiley Interdiscip Rev Dev Biol ; 10(1): e392, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909689

RESUMEN

Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Proteoma/metabolismo , Coloración y Etiquetado/métodos , Animales , Humanos , Proteoma/análisis
14.
Nat Commun ; 12(1): 2382, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888706

RESUMEN

Conventional approaches to identify secreted factors that regulate homeostasis are limited in their abilities to identify the tissues/cells of origin and destination. We established a platform to identify secreted protein trafficking between organs using an engineered biotin ligase (BirA*G3) that biotinylates, promiscuously, proteins in a subcellular compartment of one tissue. Subsequently, biotinylated proteins are affinity-enriched and identified from distal organs using quantitative mass spectrometry. Applying this approach in Drosophila, we identify 51 muscle-secreted proteins from heads and 269 fat body-secreted proteins from legs/muscles, including CG2145 (human ortholog ENDOU) that binds directly to muscles and promotes activity. In addition, in mice, we identify 291 serum proteins secreted from conditional BirA*G3 embryo stem cell-derived teratomas, including low-abundance proteins with hormonal properties. Our findings indicate that the communication network of secreted proteins is vast. This approach has broad potential across different model systems to identify cell-specific secretomes and mediators of interorgan communication in health or disease.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteómica/métodos , Proteínas Represoras/metabolismo , Coloración y Etiquetado/métodos , Animales , Animales Modificados Genéticamente , Biotina/metabolismo , Biotinilación , Ligasas de Carbono-Nitrógeno/genética , Línea Celular , Modelos Animales de Enfermedad , Drosophila , Células Madre Embrionarias , Proteínas de Escherichia coli/genética , Femenino , Humanos , Masculino , Ratones , Ingeniería de Proteínas , Transporte de Proteínas , Proteínas Represoras/genética , Espectrometría de Masas en Tándem/métodos , Teratoma/diagnóstico , Teratoma/patología
15.
Dev Biol ; 334(1): 213-23, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19631206

RESUMEN

Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Páncreas/citología , Regeneración/fisiología , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Supervivencia Celular , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Endocrinas/metabolismo , Técnica del Anticuerpo Fluorescente , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Datos de Secuencia Molecular , Páncreas/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
16.
Genetics ; 214(1): 75-89, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31685521

RESUMEN

Targeted genomic knock-ins are a valuable tool to probe gene function. However, knock-in methods involving homology-directed repair (HDR) can be laborious. Here, we adapt the mammalian CRISPaint [clustered regularly interspaced short palindromic repeat (CRISPR)-assisted insertion tagging] homology-independent knock-in method for Drosophila melanogaster, which uses CRISPR/Cas9 and nonhomologous end joining to insert "universal" donor plasmids into the genome. Using this method in cultured S2R+ cells, we efficiently tagged four endogenous proteins with the bright fluorescent protein mNeonGreen, thereby demonstrating that an existing collection of CRISPaint universal donor plasmids is compatible with insect cells. In addition, we inserted the transgenesis marker 3xP3-red fluorescent protein into seven genes in the fly germ line, producing heritable loss-of-function alleles that were isolated by simple fluorescence screening. Unlike in cultured cells, insertions/deletions always occurred at the genomic insertion site, which prevents predictably matching the insert coding frame to the target gene. Despite this effect, we were able to isolate T2A-Gal4 insertions in four genes that serve as in vivo expression reporters. Therefore, homology-independent insertion in Drosophila is a fast and simple alternative to HDR that will enable researchers to dissect gene function.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnicas de Sustitución del Gen/métodos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas , Drosophila melanogaster/embriología , Embrión no Mamífero , Genoma , Masculino , Mutagénesis Insercional , Plásmidos/genética
17.
Curr Protoc Mol Biol ; 130(1): e112, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31869524

RESUMEN

The CRISPR-Cas9 system makes it possible to cause double-strand breaks in specific regions, inducing repair. In the presence of a donor construct, repair can involve insertion or 'knock-in' of an exogenous cassette. One common application of knock-in technology is to generate cell lines expressing fluorescently tagged endogenous proteins. The standard approach relies on production of a donor plasmid with ∼500 to 1000 bp of homology on either side of an insertion cassette that contains the fluorescent protein open reading frame (ORF). We present two alternative methods for knock-in of fluorescent protein ORFs into Cas9-expressing Drosophila S2R+ cultured cells, the single-stranded DNA (ssDNA) Drop-In method and the CRISPaint universal donor method. Both methods eliminate the need to clone a large plasmid donor for each target. We discuss the advantages and limitations of the standard, ssDNA Drop-In, and CRISPaint methods for fluorescent protein tagging in Drosophila cultured cells. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Knock-in into Cas9-positive S2R+ cells using the ssDNA Drop-In approach Basic Protocol 2: Knock-in into Cas9-positive S2R+ cells by homology-independent insertion of universal donor plasmids that provide mNeonGreen (CRISPaint method) Support Protocol 1: sgRNA design and cloning Support Protocol 2: ssDNA donor synthesis Support Protocol 3: Transfection using Effectene Support Protocol 4: Electroporation of S2R+-MT::Cas9 Drosophila cells Support Protocol 5: Single-cell isolation of fluorescent cells using FACS.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila/citología , Drosophila/genética , Técnicas de Sustitución del Gen/métodos , Genes de Insecto , Proteínas Fluorescentes Verdes/genética , Sistemas de Lectura Abierta , Animales , Células Cultivadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN de Cadena Simple/genética , Edición Génica/métodos , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Transfección
18.
Nat Biotechnol ; 38(1): 108, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31748691

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Nat Biotechnol ; 36(9): 880-887, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30125270

RESUMEN

Protein interaction networks and protein compartmentalization underlie all signaling and regulatory processes in cells. Enzyme-catalyzed proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in living cells. However, current PL methods require over 18 h of labeling time or utilize chemicals with limited cell permeability or high toxicity. We used yeast display-based directed evolution to engineer two promiscuous mutants of biotin ligase, TurboID and miniTurbo, which catalyze PL with much greater efficiency than BioID or BioID2, and enable 10-min PL in cells with non-toxic and easily deliverable biotin. Furthermore, TurboID extends biotin-based PL to flies and worms.


Asunto(s)
Mapeo de Interacción de Proteínas , Catálisis , Enzimas/metabolismo , Mutación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA