Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 137(25): 3548-3562, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33690842

RESUMEN

The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1-/- mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis.


Asunto(s)
Adenosina Monofosfato/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Eritropoyesis , Células Madre Hematopoyéticas/metabolismo , Homeostasis , Animales , Tranportador Equilibrativo 1 de Nucleósido/genética , Humanos , Ratones , Ratones Noqueados
2.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348953

RESUMEN

The CTP nucleotide is a key precursor of nucleic acids metabolism essential for DNA replication. De novo CTP production relies on CTP synthetases 1 and 2 (CTPS1 and CTPS2) that catalyze the conversion of UTP into CTP. CTP synthetase activity is high in proliferating cells including cancer cells; however, the respective roles of CTPS1 and CTPS2 in cell proliferation are not known. By inactivation of CTPS1 and/or CTPS2 and complementation experiments, we showed that both CTPS1 and CTPS2 are differentially required for cell proliferation. CTPS1 was more efficient in promoting proliferation than CTPS2, in association with a higher intrinsic enzymatic activity that was more resistant to inhibition by 3-deaza-uridine, an UTP analog. The contribution of CTPS2 to cell proliferation was modest when CTPS1 was expressed but essential in absence of CTPS1. Public databases analysis of more than 1,000 inactivated cancer cell lines for CTPS1 or CTPS2 confirmed that cell growth is highly dependent of CTPS1 but less or not of CTPS2. Therefore, our results demonstrate that CTPS1 is the main contributor to cell proliferation.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Uridina Trifosfato/metabolismo , Proliferación Celular , Ciclo Celular , Línea Celular
3.
Int J Tryptophan Res ; 14: 11786469211003109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33814916

RESUMEN

Low levels of the neurotransmitter serotonin have been associated with the onset of depression. While traditional treatments include antidepressants, physical exercise has emerged as an alternative for patients with depressive disorders. Yet there remains the fundamental question of how exercise is sensed by the brain. The existence of a muscle-brain endocrine loop has been proposed: according to this scenario, exercise modulates metabolization of tryptophan into kynurenine within skeletal muscle, which in turn affects the brain, enhancing resistance to depression. But the breakdown of tryptophan into kynurenine during exercise may also alter serotonin synthesis and help limit depression. In this study, we investigated whether peripheral serotonin might play a role in muscle-brain communication permitting adaptation for endurance training. We first quantified tryptophan metabolites in the blood of 4 trained athletes before and after a long-distance trail race and correlated changes in tryptophan metabolism with physical performance. In parallel, to assess exercise capacity and endurance in trained control and peripheral serotonin-deficient mice, we used a treadmill incremental test. Peripheral serotonin-deficient mice exhibited a significant drop in physical performance despite endurance training. Brain levels of tryptophan metabolites were similar in wild-type and peripheral serotonin-deficient animals, and no products of muscle-induced tryptophan metabolism were found in the plasma or brains of peripheral serotonin-deficient mice. But mass spectrometric analyses revealed a significant decrease in levels of 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in both the soleus and plantaris muscles, demonstrating that metabolization of tryptophan into serotonin in muscles is essential for adaptation to endurance training. In light of these findings, the breakdown of tryptophan into peripheral but not brain serotonin appears to be the rate-limiting step for muscle adaptation to endurance training. The data suggest that there is a peripheral mechanism responsible for the positive effects of exercise, and that muscles are secretory organs with autocrine-paracrine roles in which serotonin has a local effect.

4.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32161190

RESUMEN

Cytidine triphosphate (CTP) synthetase 1 (CTPS1) deficiency is caused by a unique homozygous frameshift splice mutation (c.1692-1G>C, p.T566Dfs26X). CTPS1-deficient patients display severe bacterial and viral infections. CTPS1 is responsible for CTP nucleotide de novo production involved in DNA/RNA synthesis. Herein, we characterized in depth lymphocyte defects associated with CTPS1 deficiency. Immune phenotyping performed in 7 patients showed absence or low numbers of mucosal-associated T cells, invariant NKT cells, memory B cells, and NK cells, whereas other subsets were normal. Proliferation and IL-2 secretion by T cells in response to TCR activation were markedly decreased in all patients, while other T cell effector functions were preserved. The CTPS1T566Dfs26X mutant protein was found to be hypomorphic, resulting in 80%-90% reduction of protein expression and CTPS activity in cells of patients. Inactivation of CTPS1 in a T cell leukemia fully abolished cell proliferation. Expression of CTPS1T566Dfs26X failed to restore proliferation of CTPS1-deficient leukemia cells to normal, except when forcing its expression to a level comparable to that of WT CTPS1. This indicates that CTPS1T566Dfs26X retained normal CTPS activity, and thus the loss of function of CTPS1T566Dfs26X is completely attributable to protein instability. This study supports that CTPS1 represents an attractive therapeutic target to selectively inhibit pathological T cell proliferation, including lymphoma.


Asunto(s)
Ligasas de Carbono-Nitrógeno/genética , Diferenciación Celular , Homocigoto , Linfocitos/inmunología , Mutación , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular , Humanos , Inmunofenotipificación , Células Jurkat , Activación de Linfocitos
5.
J Mass Spectrom ; 54(11): 885-893, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31524312

RESUMEN

Cytidine 5'-triphosphate synthetase (CTPS) is known to be a central enzyme in the de novo synthesis of CTP. We have recently demonstrated that a deficiency in CTPS1 is associated with an impaired capacity of activated lymphocytes to proliferate leading to a combined immunodeficiency disease. In order to better document its role in immunomodulation, we developed a method for measuring CTPS activity in human lymphocytes. Using liquid chromatography-mass spectrometry, we quantified CTPS activity by measuring CTP in cell lysates. A stable isotope analog of CTP served as internal standard. We characterized the kinetic parameters Vmax and Km of CTPS and verified that an inhibition of the enzyme activity was induced after 3-deazauridine (3DAU) treatment, a known inhibitor of CTPS. We then determined CTPS activity in healthy volunteers, in a family whose child displayed a homozygous mutation in CTPS1 gene and in patients who had developed or not a chronic lung allograft dysfunction (CLAD) after lung transplantation. Linearity of the CTP determination was observed up to 451 µmol/L, with accuracy in the 15% tolerance range. Michaelis-Menten kinetics for lysates of resting cells were Km =280±310 µmol/L for UTP, Vmax =83±20 pmol/min and, for lysates of activated PBMCs, Km =230±280 µmol/L for UTP, Vmax =379±90 pmol/min. Treatment by 3DAU and homozygous mutation in CTPS1 gene abolished the induction of CTPS activity associated with cell stimulation, and CTPS activity was significantly reduced in the patients who developed CLAD. We conclude that this test is suitable to reveal the involvement of CTPS alteration in immunodeficiency.


Asunto(s)
Ligasas de Carbono-Nitrógeno/análisis , Ligasas de Carbono-Nitrógeno/metabolismo , 3-Desazauridina/química , Técnicas Biosensibles , Células Sanguíneas , Ligasas de Carbono-Nitrógeno/genética , Cromatografía Líquida de Alta Presión , Humanos , Cinética , Límite de Detección , Linfocitos/metabolismo , Mutación , Reproducibilidad de los Resultados , Linfocitos T/inmunología , Espectrometría de Masas en Tándem
6.
Nat Commun ; 10(1): 3967, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31481669

RESUMEN

N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al GTP/genética , Hernia Hiatal/genética , Proteínas Intrínsecamente Desordenadas/genética , Microcefalia/genética , Nefrosis/genética , Proteínas Nucleares/genética , ARN de Transferencia/genética , Proteínas de Unión al ARN/genética , Adenosina/genética , Niño , Femenino , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Masculino , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
7.
Nat Genet ; 49(10): 1529-1538, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805828

RESUMEN

Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.


Asunto(s)
Hernia Hiatal/genética , Microcefalia/genética , Complejos Multiproteicos/genética , Mutación , Nefrosis/genética , Animales , Apoptosis/genética , Sistemas CRISPR-Cas , Proteínas Portadoras/genética , Movimiento Celular , Citoesqueleto/ultraestructura , Reparación del ADN/genética , Estrés del Retículo Endoplásmico/genética , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Modelos Moleculares , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/metabolismo , Homeostasis del Telómero/genética , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA