Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949627

RESUMEN

In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both 1H and 17O NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)]- and [Fe(EDTA-BOM2)(H2O)]- as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.

2.
Inorg Chem ; 63(3): 1575-1588, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38198518

RESUMEN

We present the synthesis and characterization of a series of Mn(III), Co(III), and Ni(II) complexes with cross-bridge cyclam derivatives (CB-cyclam = 1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) containing acetamide or acetic acid pendant arms. The X-ray structures of [Ni(CB-TE2AM)]Cl2·2H2O and [Mn(CB-TE1AM)(OH)](PF6)2 evidence the octahedral coordination of the ligands around the Ni(II) and Mn(III) metal ions, with a terminal hydroxide ligand being coordinated to Mn(III). Cyclic voltammetry studies on solutions of the [Mn(CB-TE1AM)(OH)]2+ and [Mn(CB-TE1A)(OH)]+ complexes (0.15 M NaCl) show an intricate redox behavior with waves due to the MnIII/MnIV and MnII/MnIII pairs. The Co(III) and Ni(II) complexes with CB-TE2A and CB-TE2AM show quasi-reversible features due to the CoIII/CoII or NiII/NiIII pairs. The [Co(CB-TE2AM)]3+ complex is readily reduced by dithionite in aqueous solution, as evidenced by 1H NMR studies, but does not react with ascorbate. The [Mn(CB-TE1A)(OH)]+ complex is however reduced very quickly by ascorbate following a simple kinetic scheme (k0 = k1[AH-], where [AH-] is the ascorbate concentration and k1 = 628 ± 7 M-1 s-1). The reduction of the Mn(III) complex to Mn(II) by ascorbate provokes complex dissociation, as demonstrated by 1H nuclear magnetic relaxation dispersion studies. The [Ni(CB-TE2AM)]2+ complex shows significant chemical exchange saturation transfer effects upon saturation of the amide proton signals at 71 and 3 ppm with respect to the bulk water signal.

3.
Inorg Chem ; 63(18): 8462-8475, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38642052

RESUMEN

In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τMa and τMb. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.


Asunto(s)
Compuestos de Azabiciclo , Quelantes , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética , Medios de Contraste/química , Animales , Ratones , Quelantes/química , Quelantes/síntesis química , Gadolinio/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Estructura Molecular , Estereoisomerismo , Humanos , Femenino
4.
Small ; 19(42): e2302868, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345577

RESUMEN

Here it is described nanogels (NG) based on a chitosan matrix, which are covalently stabilized by a bisamide derivative of Mn-t-CDTA (t-CDTA = trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid). the Mn(II) complex acts both as a contrast medium and as a cross-linking agent. These nanogels are proposed as an alternative to the less stable paramagnetic nanogels obtained by electrostatic interactions between the polymeric matrix and paramagnetic Gd(III) chelates. The present novel nanogels show: i) relaxivity values seven times higher than that of typical monohydrated Mn(II) chelates at the clinical fields, thanks to the combination of a restricted mobility of the complex with a fast exchange of the metal-bound water molecule; ii) high stability of the formulation over time at pH 5 and under physiological conditions, thus excluding metal leaking or particles aggregation; iii) good extravasation and accumulation, with a maximum contrast achieved at 24 h post-injection in mice bearing subcutaneous breast cancer tumor; iv) high T1 contrast (1 T) in the tumor 24 h post-injection. These improved properties pave the way for the use of these paramagnetic nanogels as promising magnetic resonance imaging (MRI) probes for in vitro and in vivo preclinical applications.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias , Ratones , Animales , Nanogeles , Imagen por Resonancia Magnética/métodos , Quelantes/química , Medios de Contraste/química
5.
Inorg Chem ; 62(10): 4272-4283, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36862621

RESUMEN

The Fe(III)-Tiron system (Tiron = 4,5-dihydroxy-1,3-benzenedisulfonate) was investigated using a combination of 1H and 17O NMR relaxometric studies at variable field and temperature and theoretical calculations at the DFT and NEVPT2 levels. These studies require a detailed knowledge of the speciation in aqueous solution at different pH values. This was achieved using potentiometric and spectrophotometric titrations, which afforded the thermodynamic equilibrium constants characterizing the Fe(III)-Tiron system. A careful control of the pH of the solution and the metal-to-ligand stoichiometric ratio allowed the relaxometric characterization of [Fe(Tiron)3]9-, [Fe(Tiron)2(H2O)2]5-, and [Fe(Tiron)(H2O)4]- complexes. The 1H nuclear magnetic relaxation dispersion (NMRD) profiles of [Fe(Tiron)3]9- and [Fe(Tiron)2(H2O)2]5- complexes evidence a significant second-sphere contribution to relaxivity. A complementary 17O NMR study provided access to the exchange rates of the coordinated water molecules in [Fe(Tiron)2(H2O)2]5- and [Fe(Tiron)(H2O)4]- complexes. Analyses of the NMRD profiles and NEVPT2 calculations indicate that electronic relaxation is significantly affected by the geometry of the Fe3+ coordination environment. Dissociation kinetic studies indicated that the [Fe(Tiron)3]9- complex is relatively inert due to the slow release of one of the Tiron ligands, while the [Fe(Tiron)2(H2O)2]5- complex is considerably more labile.

6.
Inorg Chem ; 61(1): 496-506, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890182

RESUMEN

Typically, Ln(III) complexes are isostructural along the series, which enables studying one particular metal chelate to derive the structural features of the others. This is not the case for [Ln(AAZTA)(H2O)x]- (x = 1, 2) systems, where structural variations along the series cause changes in the hydration number of the different metal complexes, and in particular the loss of one of the two metal-coordinated water molecules between Ho and Er. Herein, we present a 1H field-cycling relaxometry and 17O NMR study that enables accessing the different exchange dynamics processes involving the two water molecules bound to the metal center in the [Gd(AAZTA)(H2O)2]- complex. The resulting picture shows one Gd-bound water molecule with an exchange rate ∼6 times faster than that of the other, due to a longer metal-water distance, in accordance with density functional theory (DFT) calculations. The substitution of the more labile water molecule with a fluoride anion in a diamagnetic-isostructural analogue of the Gd-complex, [Y(AAZTA)(H2O)2]-, allows us to follow the chemical exchange process by high-resolution NMR and to describe its thermodynamic behavior. Taken together, the variety of tools offered by NMR (including high-resolution 1H, 19F NMR as a function of temperature, 1H longitudinal relaxation rates vs B0, and 17O transverse relaxation rates vs T) provides a complete description of the structure and exchange dynamics of these Ln-complexes along the series.

7.
Inorg Chem ; 61(33): 13199-13209, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35944034

RESUMEN

The GdAAZTA (AAZTA = 6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid) complex represents a platform of great interest for the design of innovative MRI probes due to its remarkable magnetic properties, thermodynamic stability, kinetic inertness, and high chemical versatility. Here, we detail the synthesis and characterization of new derivatives functionalized with four amino acids with different molecular weights and charges: l-serine, l-cysteine, l-lysine, and l-glutamic acid. The main reason for conjugating these moieties to the ligand AAZTA is the in-depth study of the chemical properties in aqueous solution of model compounds that mimic complex structures based on polypeptide fragments used in molecular imaging applications. The analysis of the 1H NMR spectra of the corresponding Eu(III)-complexes indicates the presence of a single isomeric species in solution, and measurements of the luminescence lifetimes show that functionalization with amino acid residues maintains the hydration state of the parent complex unaltered (q = 2). The relaxometric properties of the Gd(III) chelates were analyzed by multinuclear and multifrequency NMR techniques to evaluate the molecular parameters that determine their performance as MRI probes. The relaxivity values of all of the novel chelates are higher than that of GdAAZTA over the entire range of applied magnetic fields because of the slower rotational dynamics. Data obtained in reconstituted human serum indicate the occurrence of weak interactions with the proteins, which result in larger relaxivity values at the typical imaging fields. Finally, all of the new complexes are characterized by excellent chemical stability in biological matrices over time, by the absence of transmetallation processes, or the formation of ternary complexes with oxyanions of biological relevance. In particular, the kinetic stability of the new complexes, measured by monitoring the release of Gd3+ in the presence of a large excess of Zn2+, is ca. two orders of magnitude higher than that of the clinical MRI contrast agent GdDTPA.


Asunto(s)
Aminoácidos , Gadolinio , Quelantes/química , Medios de Contraste/química , Gadolinio/química , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
8.
Inorg Chem ; 61(13): 5380-5387, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35316037

RESUMEN

Nanogels (NGs) obtained by electrostatic interactions between chitosan and hyaluronic acid and comprising paramagnetic Gd chelates are gaining increasing attention for their potential application in magnetic resonance bioimaging. Herein, the macrocyclic complexes [Gd(DOTP)]5-, lacking metal-bound water molecules (q = 0), were confined or used as a cross-linker in this type of NG. Unlike the typical behavior of Gd complexes with q = 0, a remarkable relaxivity value of 78.0 mM-1 s-1 was measured at 20 MHz and 298 K, nearly 20 times greater than that found for the free complex. A careful analysis of the relaxation data emphasizes the fundamental role of second sphere water molecules with strong and long-lived hydrogen bonding interactions with the complex. Finally, PEGylated derivatives of nanoparticles were used for the first in vivo magnetic resonance imaging study of this type of NG, revealing a fast renal excretion of paramagnetic complexes after their release from the NGs.


Asunto(s)
Quelantes , Gadolinio , Medios de Contraste , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Nanogeles , Oxazoles , Pirimidinonas
9.
Chemistry ; 27(46): 11811-11817, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34114699

RESUMEN

The first binuclear Gd-complex of the 12-membered pyridine-based polyaminocarboxylate macrocyclic ligand PCTA was synthesized by C-C connection of the pyridine units through two different synthetic procedures. A dimeric AAZTA-ligand was also synthesized with the aim to compare the relaxometric results or the two ditopic Gd-complexes. Thus, the 1 H relaxometric study on [Gd2 PCTA2 (H2 O)4 ] and on [Gd2 AAZTA2 (H2 O)4 ]2- highlighted the remarkable rigidity and compactness of the two binuclear complexes, which results in molar relaxivities (per Gd), at 1.5 T and 298 K of ca. 12-12.6 mM-1 s-1 with an increase of ca. 80 % at 1.5 T and 298 K (+70 % at 310 K) with respect to the corresponding mononuclear complexes.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Medios de Contraste , Ligandos , Imagen por Resonancia Magnética
10.
Chemistry ; 27(9): 3114-3118, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33226696

RESUMEN

Metal-based contrast agents for magnetic resonance imaging present a promising avenue to image hypoxia. EuII -based contrast agents have a unique biologically relevant redox couple, EuII/III , that distinguishes this metal for use in hypoxia imaging. To that end, we investigated a strategy to enhance the contrast-enhancing capabilities of EuII -based cryptates in magnetic resonance imaging by controlling the rotational dynamics. Two dimetallic, EuII -containing cryptates were synthesized to test the efficacy of rigid versus flexible coupling strategies. A flexible strategy to dimerization led to a modest (114 %) increase in contrast enhancement per Eu ion (60 MHz, 298 K), but a rigid linking strategy led to an excellent (186 %) increase in contrast enhancement despite this compound's having the smaller molecular mass of the two dimetallic complexes. We envision the rigid linking strategy to be useful in the future design of potent EuII -based contrast agents for magnetic resonance imaging.

11.
Inorg Chem ; 60(20): 15055-15068, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34618439

RESUMEN

Investigating the relaxation of water 1H nuclei induced by paramagnetic Mn(II) complexes is important to understand the mechanisms that control the efficiency of contrast agents used in diagnostic magnetic resonance imaging (MRI). Herein, a series of potentially hexadentate triazacyclononane (TACN) derivatives containing different pendant arms were designed to explore the relaxation of the electron spin in the corresponding Mn(II) complexes by using a combination of 1H NMR relaxometry and theoretical calculations. These ligands include 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) and three derivatives in which an acetate group is replaced by sulfonamide (H3NO2ASAm), amide (H2NO2AM), or pyridyl (H2NO2APy) pendants. The analogue of H3NOTA containing three propionate pendant arms (H3NOTPrA) was also investigated. The X-ray structure of the derivative containing two acetate groups and a sulfonamide pendant arm [Mn(NO2ASAm)]- evidenced six-coordination of the ligand to the metal ion, with the coordination polyhedron being close to a trigonal prism. The relaxivities of all complexes at 20 MHz and 25 °C (1.1-1.3 mM-1 s-1) are typical of systems that lack water molecules coordinated to the metal ion. The nuclear magnetic relaxation profiles evidence significant differences in the relaxivities of the complexes at low fields (<1 MHz), which are associated with different spin relaxation rates. The zero field splitting (ZFS) parameters calculated by using DFT and CASSCF methods show that electronic relaxation is relatively insensitive to the nature of the donor atoms. However, the twist angle of the two tripodal faces that delineate the coordination polyhedron, defined by the N atoms of the TACN unit (lower face) and the donor atoms of the pendant arms (upper face), has an important effect in the ZFS parameters. A twist angle close to the ideal value for an octahedral coordination (60°), such as that in [Mn(NOTPrA)]-, leads to a small ZFS energy, whereas this value increases as the coordination polyhedron approaches to a trigonal prism.

12.
Angew Chem Int Ed Engl ; 60(19): 10736-10744, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33624910

RESUMEN

Manganese-based contrast agents (MnCAs) have emerged as suitable alternatives to gadolinium-based contrast agents (GdCAs). However, due to their kinetic lability and laborious synthetic procedures, only a few MnCAs have found clinical MRI application. In this work, we have employed a highly innovative single-pot template synthetic strategy to develop a MnCA, MnLMe , and studied the most important physicochemical properties in vitro. MnLMe displays optimized r1 relaxivities at both medium (20 and 64 MHz) and high magnetic fields (300 and 400 MHz) and an enhanced r1b =21.1 mM-1 s-1 (20 MHz, 298 K, pH 7.4) upon binding to BSA (Ka =4.2×103  M-1 ). In vivo studies show that MnLMe is cleared intact into the bladder through renal excretion and has a prolonged blood half-life compared to the commercial GdCA Magnevist. MnLMe shows great promise as a novel MRI contrast agent.

13.
Chemistry ; 26(24): 5407-5418, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31923335

RESUMEN

The heptadentate ligand L was shown to form an extremely stable Gd complex at neutral pH with a pGd value of 18.4 at pH 7.4. The X-ray crystal structures of the complexes formed with Gd and Tb displayed two very different coordination behaviors being, respectively, octa- and nonacoordinated. The relaxometric properties of the Gd complex were studied by field-dependent relaxivity measurements at various temperatures and by 17 O NMR spectroscopy. The pH-dependence of the longitudinal relaxivity profile indicated large changes around neutral pH leading to a very large value of 10.1 mm-1 ⋅s-1 (60 MHz, 298 K) at pH 4.7. The changes were attributed to an increase of the hydration number from one water molecule in basic conditions to two at acidic pH. A similar trend was observed for the luminescence of the Eu complex, confirming the change in hydration state. DOSY experiments were performed on the Lu analogue, pointing to the absence of dimers in solution in the considered pH range. A breathing mode of the complex was postulated, which was further supported by 1 H and 31 P NMR spectroscopy of the Yb complex at varying pH and was finally modeled by DFT calculations.

14.
Inorg Chem ; 59(13): 9037-9046, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32536158

RESUMEN

Relaxometric analyses and in particular the use of fast-field cycling techniques have become routine in the study of paramagnetic metal complexes. The field dependence of the solvent proton relaxation properties (nuclear magnetic relaxation dispersion, NMRD) can provide unparalleled insights into the chemistry of these complexes. However, analyzing NMRD data is a multiparametric problem, and some sets of variables are mutually compensatory. Specifically, when fitting NMRD profiles, the metal-proton distance and the rotational correlation time constant have a push-pull relationship in which a change to one causes a predictable compensation in the other. A relaxometric analysis of four isomeric chelates highlights the pitfalls that await when fitting the NMRD profiles of chelates for which dissociative water exchange is extremely rapid. In the absence of independently verified values for one of these parameters, NMRD profiles can be fitted to multiple parameter sets. This means that NMRD fitting can inadvertently be used to buttress a preconceived notion of how the complex should behave when a different parameter set may more accurately describe the actual behavior. These findings explain why the effect of very rapid dissociative exchange on the hydration state of Gd3+ has remained obscured until only recently.

15.
Inorg Chem ; 59(19): 14306-14317, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32962345

RESUMEN

We present two ligands containing a N-ethyl-4-(trifluoromethyl)benzenesulfonamide group attached to either a 6,6'-(azanediylbis(methylene))dipicolinic acid unit (H3DPASAm) or a 2,2'-(1,4,7-triazonane-1,4-diyl)diacetic acid macrocyclic platform (H3NO2ASAm). These ligands were designed to provide a pH-dependent relaxivity response upon complexation with Mn2+ in aqueous solution. The protonation constants of the ligands and the stability constants of the Mn2+ complexes were determined using potentiometric titrations complemented by spectrophotometric experiments. The deprotonations of the sulfonamide groups of the ligands are characterized by protonation constants of log KiH = 10.36 and 10.59 for DPASAm3- and HNO2ASAm2-, respectively. These values decrease dramatically to log KiH = 6.43 and 5.42 in the presence of Mn2+, because of the coordination of the negatively charged sulfonamide groups to the metal ion. The higher log KiH value in [Mn(DPASAm)]- is related to the formation of a seven-coordinate complex, while the metal ion in [Mn(NO2ASAm)]- is six-coordinated. The X-ray crystal structure of Na[Mn(DPASAm)(H2O)]·2H2O confirms the formation of a seven-coordinate complex, where the coordination environment is fulfilled by the donor atoms of the two picolinate groups, the amine N atom, the N atom of the sulfonamide group, and a coordinated water molecule. The lower conditional stability of the [Mn(NO2ASAm)]- complex and the lower protonation constant of the sulfonamide group results in complex dissociation at relatively high pH (<7.0). However, protonation of the sulfonamide group in [Mn(DPASAm)]- falls into the physiologically relevant pH window and causes a significant increase in relaxivity from r1p = 3.8 mM-1 s-1 at pH 9.0 to r1p = 8.9 mM-1 s-1 at pH 4.0 (10 MHz, 25 °C).

16.
Inorg Chem ; 59(10): 7306-7317, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32379437

RESUMEN

We report the synthesis and characterization of the macrocyclic ligand 2,2'-((2-(3,9-bis(carboxymethyl)-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-6-yl)ethyl)azanediyl)diacetic acid (H4L) and several of its complexes with lanthanide ions. The structure of the free ligand was determined using X-ray diffraction measurements. Two N atoms of the pyclen moiety in the trans position are protonated in the solid state, together with the exocyclic N atom and one of the carboxylate groups of the ligand. The relaxivity of the Gd3+ complex was found to increase from 6.7 mM-1 s-1 at pH 8.6 to 8.5 mM-1 s-1 below pH ≈ 6.0. Luminescence lifetime measurements recorded from H2O and D2O solutions of the Eu3+ complex evidence the presence of a single complex species in solution at low pH (∼5.0) that contains two inner-sphere water molecules. DFT calculations suggest that the coordination environment of the Ln3+ ion is fulfilled by the four N atoms of the pyclen unit, two oxygen atoms of the macrocyclic acetate groups, and an oxygen atom of an exocyclic carboxylate group. The two inner-sphere water molecules complete coordination number nine around the metal ion. At high pH (∼9.3), the lifetime of the excited 5D0 level of Eu3+ displays a biexponential behavior that can be attributed to the presence of two species in solution with hydration numbers of q = 0 and q = 1. The 1H NMR and DOSY spectra recorded from solutions of the Eu3+ and Y3+ complexes reveal a structural change triggered by pH and the formation of small aggregates at high pH values.

17.
Bioconjug Chem ; 30(5): 1530-1538, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31050414

RESUMEN

The bifunctional chelator S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane- N, N', N″, N‴-1,4,7,10-tetraacetate (IB-DOTA) is on paper the most attractive of the commercially available bifunctional chelators for magnetic resonance imaging (MRI) applications. The preserved DOTA scaffold is known to produce extremely kinetically and thermodynamically robust chelates with the Gd3+ ion. Also, ligation through four acetate pendant arms should ensure that the rapid water exchange kinetics so, crucial to the function of an MRI contrast agent are retained. However, upon ligation of the Gd3+ ion, IB-DOTA differentiates into two distinct isomers defined by the positions of the benzylic substituent (corner or side). A relaxometric analysis of these two isomers revealed marked differences in the property and behavior of the two chelates. Most notably the side isomer is found to be substantially more likely to aggregate in aqueous solution than its corner counterpart. This aggregation results in higher relaxivity for the side isomer versus the corner isomer, an observation that potentially obscures the impact of differences in water exchange kinetics between the two isomers. The side isomer is composed of a significant fraction of a twisted square antiprismatic coordination geometry that exchanges water more rapidly than optimal (τM = 7 ns) for maximizing relaxivity. The impact of this excessively fast exchange is not observed in the relaxivity of the side isomer only because in isolation this chelate tumbles much more slowly than the corner isomer. However, this situation is not expected to persist when the chelate is employed in a typical bioconjugate. These results imply that the corner isomer of IB-DOTA may represent a better choice of bifunctional chelator for bioconjugation applications in which a large macromolecule is to be tagged for MRI applications.


Asunto(s)
Quelantes/química , Imagen Molecular/métodos , Medios de Contraste/administración & dosificación , Cinética , Imagen por Resonancia Magnética/métodos , Termodinámica
18.
Chemistry ; 25(16): 4184-4193, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30620106

RESUMEN

The new ligand HPDO3MA [(R,R,R,R)-10-(2-hydroxypropyl)-α,α',α''-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid] was designed to combine and optimize the chemical properties of the macrocyclic ligands HPDO3A and DOTMA. The presence of the methyl groups on the acetic pendant arms of HPDO3A is expected to rigidify the structure of the ligand and favor an increase of the kinetic inertness of the Ln complexes. 1 H NMR spectra of Eu(HPDO3MA) displayed the presence of two pairs of diastereoisomers: SAP (square antiprismatic) and TSAP (twisted square antiprismatic) isomers (56 and 44 %, respectively). In addition, 1 H and 17 O relaxometric NMR studies of Gd(HPDO3MA) showed approximately a 10 % increase in relaxivity and a faster water exchange rate with respect to Gd(HPDO3A). Moreover, a detailed chemical exchange saturation transfer (CEST) characterization of Yb(HPDO3MA) displayed a sensitivity about two times larger than that of Yb(HPDO3A) both in phantom and in cell labeling experiments. Finally, the kinetic inertness of Yb(HPDO3MA) was measured to be twice as high as that of Yb(HPDO3A), with a dissociation half-life at physiological pH of about 2500 years.

19.
Chemistry ; 25(18): 4782-4792, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30690809

RESUMEN

We present two novel octadentate cyclen-based ligands bearing one (L1 ) or two (L2 ) phenylacetamide pendants with two CF3 groups either at positions 3 and 5 (L1 ) or 4 (L2 ). The corresponding Gd3+ complexes possess one coordinated water molecule, as confirmed by luminescence lifetime measurements on the EuIII and TbIII analogues. A detailed 1 H and 17 O relaxometric characterization has revealed the parameters that govern the relaxivities of these complexes. The water-exchange rate of the mono-amide derivative GdL1 (kex 298 =1.52×106  s-1 ) is faster than that determined for the bis-amide complex GdL2 (kex 298 =0.73×106  s-1 ). 1 H and 19 F NMR studies have indicated that the complexes are present in solution almost exclusively as the square-antiprismatic (SAP) isomers. 19 F NMR relaxation studies indicated Gd⋅⋅⋅F distances of 7.4±0.1 and 9.1±0.1 Šfor GdL1 and GdL2 , respectively. Phantom MRI studies revealed the favorable properties of GdL2 as a dual 1 H/19 F magnetic resonance imaging (MRI) probe, whereas the shorter Gd⋅⋅⋅F distance of GdL1 reduces the signal-to-noise ratio due to the very short transverse relaxation time of the 19 F NMR signal.

20.
Inorg Chem ; 58(8): 5196-5210, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30942072

RESUMEN

Protonation of a distant, noncoordinated group of metal-based magnetic resonance imaging contrast agents potentially changes their relaxivity. The effect of a positive charge of the drug on the human serum albumin (HSA)-drug interaction remains poorly understood as well. Accordingly, a (dibenzylamino)methylphosphinate derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was efficiently synthesized using pyridine as the solvent for a Mannich-type reaction of tBu3DO3A, formaldehyde, and Bn2NCH2PO2H2 ethyl ester. The ligand protonation and metal ion (Gd3+, Cu2+, and Zn2+) stability constants were similar to those of the parent DOTA, whereas the basicity of the side-chain amino group of the complexes (log KA = 5.8) was 1 order of magnitude lower than that of the free ligand (log KA = 6.8). The presence of one bound water molecule in both deprotonated and protonated forms of the gadolinium(III) complex was deduced from the solid-state X-ray diffraction data [gadolinium(III) and dysprosium(III)], from the square antiprism/twisted square antiprism (SA/TSA) isomer ratio along the lanthanide series, from the fluorescence data of the europium(III) complex, and from the 17O NMR measurements of the dysprosium(III) and gadolinium(III) complexes. In the gadolinium(III) complex with the deprotonated amino group, water exchange is extremely fast (τM = 6 ns at 25 °C), most likely thanks to the high abundance of the TSA isomer and to the presence of a proximate protonable group, which assists the water-exchange process. The interaction between lanthanide(III) complexes and HSA is pH-dependent, and the deprotonated form is bound much more efficaciously (∼13% and ∼70% bound complex at pH = 4 and 7, respectively). The relaxivities of the complex and its HSA adduct are also pH-dependent, and the latter is approximately 2-3 times increased at pH = 4-7. The relaxivity for the supramolecular HSA-complex adduct ( r1b) is as high as 52 mM-1 s-1 at neutral pH (at 20 MHz and 25 °C). The findings of this study stand as a proof-of-concept, showing the ability to manipulate an albumin-drug interaction, and thus the blood pool residence time of the drug, by introducing a positive charge in a side-chain amino group.


Asunto(s)
Bencilaminas/química , Compuestos Heterocíclicos con 1 Anillo/química , Elementos de la Serie de los Lantanoides/química , Ácidos Fosfínicos/química , Albúmina Sérica Humana/química , Gadolinio/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Unión Proteica , Protones , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA