RESUMEN
Climate change due to the continuous increase in the release of green-house gasses associated with anthropogenic activity has made a significant impact on the sustainability of life on our planet. Methane (CH4) is a green-house gas whose concentrations in the atmosphere are on the rise. CH4 measurement is important for both the environment and the safety at the industrial and household level. Methanotrophs are distinguished for their unique characteristic of using CH4 as the sole source of carbon and energy, due to the presence of the methane monooxygenases that oxidize CH4 under ambient temperature conditions. This has attracted interest in the use of methanotrophs in biotechnological applications as well as in the development of biosensing systems for CH4 quantification and monitoring. Biosensing systems using methanotrophs rely on the use of whole microbial cells that oxidize CH4 in presence of O2, so that the CH4 concentration is determined in an indirect manner by measuring the decrease of O2 level in the system. Although several biological properties of methanotrophic microorganisms still need to be characterized, different studies have demonstrated the feasibility of the use of methanotrophs in CH4 measurement. This review summarizes the contributions in methane biosensing systems and presents a prospective of the valid use of methanotrophs in this field. KEY POINTS: ⢠Methanotroph environmental relevance in methane oxidation ⢠Methanotroph biotechnological application in the field of biosensing ⢠Methane monooxygenase as a feasible biorecognition element in biosensors.
Asunto(s)
Gases , Metano , Oxidación-Reducción , Biotecnología , Cambio Climático , Microbiología del SueloRESUMEN
Staphylococcus aureus implant-associated infections are difficult to treat because of the ability of bacteria to form biofilm on medical devices. Here, the efficacy of Sb-1 to control or prevent S. aureus colonization on medical foreign bodies was investigated in a Galleria mellonella larval infection model. For colonization control assays, sterile K-wires were implanted into larva prolegs. After 2 days, larvae were infected with methicillin-resistant S. aureus ATCC 43300 and incubated at 37 °C for a further 2 days, when treatments with either daptomycin (4 mg/kg), Sb-1 (107 PFUs) or a combination of them (3 x/day) were started. For biofilm prevention assays, larvae were pre-treated with either vancomycin (10 mg/kg) or Sb-1 (107 PFUs) before the S. aureus infection. In both experimental settings, K-wires were explanted for colony counting two days after treatment. In comparison to the untreated control, more than a 4 log10 CFU and 1 log10 CFU reduction was observed on K-wires recovered from larvae treated with the Sb-1/daptomycin combination and with their singular administration, respectively. Moreover, pre-infection treatment with Sb-1 was found to prevent K-wire colonization, similarly to vancomycin. Taken together, the obtained results demonstrated the strong potential of the Sb-1 antibiotic combinatory administration or the Sb-1 pretreatment to control or prevent S. aureus-associated implant infections.
Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Mariposas Nocturnas , Infecciones Estafilocócicas , Animales , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Vancomicina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Mariposas Nocturnas/microbiología , Larva/microbiología , Pruebas de Sensibilidad MicrobianaRESUMEN
Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is widely used, it does not efficiently protect against pulmonary tuberculosis and an improved tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses different ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and host immune responses. We recently reported that secretion of T7S substrates belonging to the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (polymorphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies required both a functional ESX-5 system and a functional PPE38/71 protein for secretion. Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secretion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope mapping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic presentation or activation of innate immune cells, nor protective efficacy in two different mouse vaccination-infection models. This unexpected finding stimulates a reassessment of the immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are contained in vaccine formulations currently in clinical evaluation.
Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/inmunología , Proteínas de la Membrana/inmunología , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Proteínas Bacterianas/genética , Femenino , Genoma Bacteriano , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Familia de Multigenes , Tuberculosis/prevención & control , VirulenciaRESUMEN
Candida orthopsilosis is a human fungal pathogen belonging to the Candida parapsilosis sensu lato species complex. C. orthopsilosis annotated genome harbors 3 putative agglutinin-like sequence (ALS) genes named CORT0B00800, CORT0C04210 and CORT0C04220. The aim of this study was to investigate the role played by CORT0C04210 (CoALS4210) in the virulence and pathogenicity of this opportunistic yeast. Heterozygous and null mutant strains lacking one or both copies of CoALS4210 were obtained using the SAT1-flipper cassette strategy and were characterized in in vitro, ex vivo and in vivo models. While no differences between the mutant and the wild-type strains were observed in in vitro growth or in the ability to undergo morphogenesis, the CoALS4210 null mutant showed an impaired adhesion to human buccal epithelial cells compared to heterozygous and wild type strains. When the pathogenicity of CoALS4210 mutant and wild type strains was evaluated in a murine model of systemic candidiasis, no statistically significant differences were observed in fungal burden of target organs. Since gene disruption could alter chromatin structure and influence transcriptional regulation of other genes, two independent CRISPR/Cas9 edited mutant strains were generated in the same genetic background used to create the deleted strains. CoALS4210-edited strains were tested for their in vitro growing ability, and compared with the deleted strain for adhesion ability to human buccal epithelial cells. The results obtained confirmed a reduction in the adhesion ability of C. orthopsilosis edited strains to buccal cells. These findings provide the first evidence that CRISPR/Cas9 can be successfully used in C. orthopsilosis and demonstrate that CoALS4210 plays a direct role in the adhesion of C. orthopsilosis to human buccal cells but is not primarily involved in the onset of disseminated candidiasis.
Asunto(s)
Candida parapsilosis/genética , Genes Fúngicos , Mucosa Bucal/microbiología , Animales , Sistemas CRISPR-Cas , Candida parapsilosis/crecimiento & desarrollo , Candida parapsilosis/patogenicidad , Candidiasis/microbiología , Adhesión Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Mutagénesis , Virulencia/genéticaRESUMEN
Background: Candida orthopsilosis is a human fungal pathogen responsible for a wide spectrum of symptomatic infections. Evidence suggests that C. orthopsilosis is mainly susceptible to azoles, the most extensively used antifungals for treatment of these infections. However, fluconazole-resistant clinical isolates are reported. Objectives: This study evaluated the contribution of a single amino acid substitution in the azole target CoErg11 to the development of azole resistance in C. orthopsilosis. Methods: C. orthopsilosis clinical isolates (n = 40) were tested for their susceptibility to azoles and their CoERG11 genes were sequenced. We used a SAT1 flipper-driven transformation to integrate a mutated CoERG11 allele in the genetic background of a fluconazole-susceptible isolate. Results: Susceptibility testing revealed that 16 of 40 C. orthopsilosis clinical isolates were resistant to fluconazole and to at least one other azole. We identified an A395T mutation in the CoERG11 coding sequence of azole-resistant isolates only that resulted in the non-synonymous amino acid substitution Y132F. The SAT1 flipper cassette strategy led to the creation of C. orthopsilosis mutants that carried the A395T mutation in one or both CoERG11 alleles (heterozygous or homozygous mutant, respectively) in an azole-susceptible genetic background. We tested mutant strains for azole susceptibility and for hot-spot locus heterozygosity. Both the heterozygous and the homozygous mutant strains exhibited an azole-resistant phenotype. Conclusions: To the best of our knowledge, these findings provide the first evidence that the CoErg11 Y132F substitution confers multi-azole resistance in C. orthopsilosis.
Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Farmacorresistencia Fúngica Múltiple/genética , Proteínas Fúngicas/genética , Sustitución de Aminoácidos , Azoles/uso terapéutico , Candidiasis/microbiología , Fluconazol/farmacología , Fluconazol/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , MutaciónRESUMEN
Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens.
Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Reacciones Cruzadas , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Células TH1RESUMEN
Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms.
Asunto(s)
Bacterias Grampositivas/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Bacterias Grampositivas/patogenicidad , Familia de Multigenes , VirulenciaRESUMEN
Understanding the molecular strategies used by Mycobacterium tuberculosis to invade and persist within the host is of paramount importance to tackle the tuberculosis pandemic. Comparative genomic surveys have revealed that hadC, encoding a subunit of the HadBC dehydratase, is mutated in the avirulent M. tuberculosis H37Ra strain. We show here that mutation or deletion of hadC affects the biosynthesis of oxygenated mycolic acids, substantially reducing their production level. Additionally, it causes the loss of atypical extra-long mycolic acids, demonstrating the involvement of HadBC in the late elongation steps of mycolic acid biosynthesis. These events have an impact on the morphotype, cording capacity and biofilm growth of the bacilli as well as on their sensitivity to agents such as rifampicin. Furthermore, deletion of hadC leads to a dramatic loss of virulence: an almost 4-log drop of the bacterial load in the lungs and spleens of infected immunodeficient mice. Both its unique function and importance for M. tuberculosis virulence make HadBC an attractive therapeutic target for tuberculosis drug development.
Asunto(s)
Proteínas Bacterianas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Ácidos Micólicos/química , Tuberculosis/microbiología , Animales , Antituberculosos/farmacología , Carga Bacteriana , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Eliminación de Gen , Pulmón/microbiología , Ratones , Mutación , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/metabolismo , Bazo/microbiología , Virulencia/genéticaRESUMEN
Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.
Asunto(s)
Asparagina/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Nitrógeno/metabolismo , Fagosomas/metabolismo , Estrés Fisiológico , Tuberculosis/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Immunoblotting , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Inmunoelectrónica , Fagosomas/microbiologíaRESUMEN
Staphylococcus epidermidis plays a major role in biofilm-related medical device infections. Herein the anti-biofilm activity of the human liver-derived antimicrobial peptide hepcidin 20 (hep20) was evaluated against polysaccharide intercellular adhesin (PIA)-positive and PIA-negative clinical isolates of S. epidermidis. Hep20 markedly inhibited biofilm formation and bacterial cell metabolism of PIA-positive and PIA-negative strains, but the decrease in biofilm biomass only partially correlated with a decrease in viable bacteria. Confocal microscope images revealed that, in the presence of hep20, both PIA-positive and PIA-negative strains formed biofilms with altered architectures and reduced amounts of extracellular matrix. Co-incubation of hep20 with vancomycin produced no synergistic effect, evaluated as number of viable cells, both in preventing biofilm formation and in treating preformed biofilms. In contrast, biofilms obtained in the presence of hep20, and then exposed to vancomycin, displayed an increased susceptibility to vancomycin. These results suggest that hep20 may inhibit the production/accumulation of biofilm extracellular matrix.
Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Hepcidinas/farmacología , Fragmentos de Péptidos/farmacología , Polisacáridos Bacterianos/fisiología , Staphylococcus epidermidis/fisiología , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Vancomicina/farmacologíaRESUMEN
The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.
Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Pared Celular/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculosis/microbiología , Secuencias de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pared Celular/química , Pared Celular/genética , Células Cultivadas , Humanos , Macrófagos/microbiología , Ratones , Ratones SCID , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Transporte de Proteínas , VirulenciaRESUMEN
Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence.
Asunto(s)
Citoplasma/microbiología , Mycobacterium/patogenicidad , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular , Técnicas de Sustitución del Gen , Interacciones Huésped-Patógeno , Humanos , Lisosomas/microbiología , Lisosomas/ultraestructura , Mycobacterium/genética , Mycobacterium/metabolismo , Fagosomas/microbiología , Fagosomas/ultraestructura , Estructura Terciaria de Proteína , Ubiquitina/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
BACKGROUND: The pathogenesis of Mycobacterium tuberculosis largely depends on the secretion of the 6-kD early secreted antigenic target ESAT-6 (EsxA) and the 10-kD culture filtrate protein CFP-10 (EsxB) via the ESX-1/typeVII secretion system. Although gene products from the core RD1 region have been shown to be deeply implicated in this process, less is known about proteins encoded further upstream in the 5' region of the ESX-1 cluster, such as the ESX-1 secretion-associated proteins (Esps) EspF or EspG(1). METHODS: To elucidate the role of EspF/G(1), whose orthologs in Mycobacterium marinum and Mycobacterium smegmatis are reportedly involved in EsxA/B secretion, we constructed 3 M. tuberculosis knockout strains deleted for espF, espG(1) or the segment corresponding to the combined RD1(bcg)-RD1(mic) region of bacille Calmette-Guérin (BCG) and Mycobacterium microti, which also contains espF and espG(1). RESULTS: Analysis of these strains revealed that, unlike observations with the model organisms M. smegmatis or M. marinum, disruption of espF and espG(1) in M. tuberculosis did not impact the secretion and T cell recognition of EsxA/B but still caused severe attenuation. CONCLUSIONS: The separation of the 2 ESX-1-connected phenotypes (ie, EsxA/B secretion and virulence) indicates that EsxA/B secretion is not the only readout for a functional ESX-1 system and suggests that other processes involving EspF/G(1) also play important roles in ESX-1-mediated pathogenicity.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Ratones , Ratones Endogámicos C57BL , Familia de Multigenes , Mycobacterium tuberculosis/genética , Procesamiento Proteico-Postraduccional , VirulenciaRESUMEN
Sepsis is defined as a systemic inflammatory dysfunction strictly associated with infectious diseases, which represents an important health issue whose incidence is continuously increasing worldwide. Nowadays, sepsis is considered as one of the main causes of death that mainly affects critically ill patients in clinical settings, with a higher prevalence in low-income countries. Currently, sepsis management still represents an important challenge, since the use of traditional techniques for the diagnosis does not provide a rapid response, which is crucial for an effective infection management. Biosensing systems represent a valid alternative due to their characteristics such as low cost, portability, low response time, ease of use and suitability for point of care/need applications. This review provides an overview of the infectious agents associated with the development of sepsis and the host biomarkers suitable for diagnosis and prognosis. Special focus is given to the new emerging biosensing technologies using electrochemical and optical transduction techniques for sepsis diagnosis and management.
Asunto(s)
Técnicas Biosensibles , Sepsis , Humanos , Técnicas Biosensibles/métodos , Sepsis/diagnóstico , Diagnóstico Precoz , Biomarcadores , Sistemas de Atención de PuntoRESUMEN
Recent studies indicate the existence of a complex microbiome in the meconium of newborns that plays a key role in regulating many host health-related conditions. However, a high variability between studies has been observed so far. In the present study, the meconium microbiome composition and the predicted microbial metabolic pathways were analysed in a consecutive cohort of 96 full-term newborns. The effect of maternal epidemiological variables on meconium diversity was analysed using regression analysis and PERMANOVA. Meconium microbiome composition mainly included Proteobacteria (30.95%), Bacteroidetes (23.17%) and Firmicutes (17.13%), while for predicted metabolic pathways, the most abundant genes belonged to the class "metabolism". We observed a significant effect of maternal Rh factor on Shannon and Inverse Simpson indexes (p = 0.045 and p = 0.049 respectively) and a significant effect of delivery mode and maternal antibiotic exposure on Jaccard and Bray-Curtis dissimilarities (p = 0.001 and 0.002 respectively), while gestational age was associated with observed richness and Shannon indexes (p = 0.018 and 0.037 respectively), and Jaccard and Bray-Curtis dissimilarities (p = 0.014 and 0.013 respectively). The association involving maternal Rh phenotype suggests a role for host genetics in shaping meconium microbiome prior to the exposition to the most well-known environmental variables, which will influence microbiome maturation in the newborn.
Asunto(s)
Microbioma Gastrointestinal , Meconio/microbiología , Antibacterianos , Bacteroidetes , Estudios de Cohortes , Femenino , Firmicutes , Microbioma Gastrointestinal/fisiología , Edad Gestacional , Humanos , Recién Nacido , Exposición Materna , Meconio/metabolismo , Embarazo , Proteobacteria , Sistema del Grupo Sanguíneo Rh-HrRESUMEN
In contrast to the great majority of mycobacterial species that are harmless saprophytes, Mycobacterium tuberculosis and other closely related tubercle bacilli have evolved to be among the most important human and animal pathogens. The need to develop new strategies in the fight against tuberculosis (TB) and related diseases has fuelled research into the evolutionary success of the M. tuberculosis complex members. Amongst the various disciplines, genomics and functional genomics have been instrumental in improving our understanding of these organisms. In this review we will present some of the recent key findings on molecular determinants of mycobacterial pathogenicity and attenuation, the evolution of M. tuberculosis, genome dynamics, antigen mining for improved diagnostic and subunit antigens, and finally the identification of novel drug targets. The genomics revolution has changed the landscape of TB research, and now underpins our renewed efforts to defeat this deadly pathogen.
Asunto(s)
Evolución Biológica , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Animales , Genoma Bacteriano/genética , Humanos , Mycobacterium tuberculosis/genética , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/fisiologíaRESUMEN
An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review "draws a line" on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex-host interaction, and how far we are from defining potential novel targets or therapeutic strategies-key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.
RESUMEN
The rapid and selective identification in the clinical setting of pathogenic bacteria causing healthcare associated infections (HAIs) and in particular blood stream infections (BSIs) is a major challenge, as the number of people affected worldwide and the associated mortality are on the rise. In fact, traditional laboratory techniques such culture and polymerase chain reaction (PCR)-based methodologies are often associated to long turnaround times, which justify the pressing need for the development of rapid, specific and portable point of care devices. The recently discovered clustered regularly interspaced short palindromic repeat loci (CRISPR) and the new class of programmable endonuclease enzymes called CRISPR associated proteins (Cas) have revolutionised molecular diagnostics. The use of Cas proteins in optical and electrochemical biosensing devices has significantly improved the detection of nucleic acids in clinical samples. In this study, a CRISPR/Cas12a system was coupled with electrochemical impedance spectroscopy (EIS) measurements to develop a label-free biosensing assay for the detection of Escherichia coli and Staphylococcus aureus, two bacterial species commonly associated to BSI infections. The programmable Cas12a endonuclease activity, induced by a specific guide RNA (gRNA), and the triggered collateral activity were assessed in in vitro restriction analyses, and evaluated thanks to impedance measurements using a modified gold electrode. The Cas12a/gRNA system was able to specifically recognize amplicons from different clinical isolates of E. coli and S. aureus with a limit of detection of 3 nM and a short turnaround time approximately of 1.5 h. To the best of our knowledge, this is the first biosensing device based on CRISPR/Cas12a label free impedance assay.
Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , ADN Bacteriano/genética , Impedancia Eléctrica , Escherichia coli/genética , Humanos , Staphylococcus aureus/genéticaRESUMEN
A main challenge in the development of biosensing devices for the identification and quantification of nucleic acids is to avoid the amplification of the genetic material from the sample by polymerase chain reaction (PCR), which is at present necessary to enhance sensitivity and selectivity of assays. PCR has undoubtedly revolutionized genetic analyses, but it requires careful purification procedures that are not easily implemented in point of care (POC) devices. In recent years, a new strategy for nucleic acid detection based on clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein systems (Cas) seems to offer unprecedented possibilities. The coupling of the CRISPR/Cas system with recent isothermal amplification methods is fostering the development of innovative optical and electrochemical POC devices. In this review, the mechanisms of action of several new CRISRP/Cas systems are reported together with their use in biosensing of nucleic acids.